×

zbMATH — the first resource for mathematics

Non-commutative geometry inspired charged black holes. (English) Zbl 1256.83014
Summary: We find a new, non-commutative geometry inspired, solution of the coupled Einstein-Maxwell field equations describing a variety of charged, self-gravitating objects, including extremal and non-extremal black holes. The metric smoothly interpolates between de Sitter geometry, at short distance, and Reissner-Nordstrøm geometry far away from the origin. Contrary to the ordinary Reissner-Nordstrøm spacetime there is no curvature singularity in the origin neither “naked” nor shielded by horizons. We investigate both Hawking process and pair creation in this new scenario.

MSC:
83C57 Black holes
83C65 Methods of noncommutative geometry in general relativity
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Nicolini, P.; Smailagic, A.; Spallucci, E., Phys. lett. B, 632, 547, (2006)
[2] Smailagic, A.; Spallucci, E., J. phys. A, 37, 7169, (2004)
[3] Spallucci, E.; Smailagic, A.; Nicolini, P., Phys. rev. D, 73, 084004, (2006)
[4] Gruppuso, A.; Nicolini, P.; Casadio, R.; Cox, P.H.; Harms, B.; Micu, O., J. phys. A, J. phys. A, Phys. rev. D, 73, 044019, (2006)
[5] Rizzo, T.G.
[6] Myung, Y.S.; Kim, Y.-W.; Park, Y.-J.
[7] Smailagic, A.; Spallucci, E.; Smailagic, A.; Spallucci, E., J. phys. A, J. phys. A, 36, L517, (2003)
[8] Giddings, S.B.; Bleicher, M.; Hofmann, S.; Hossenfelder, S.; Stoecker, H.; Stenmark, M.; Cavaglia, M.; Chamblin, A.; Cooper, F.; Nayak, G.C.; Cavaglia, M.; Das, S.; Rizzo, T.G.; Rizzo, T.G.; Rizzo, T.G.; Casanova, A.; Spallucci, E.; Alberghi, G.L.; Casadio, R.; Galli, D.; Gregori, D.; Tronconi, A.; Vagnoni, V.; Casadio, R.; Harms, B.; Stoecker, H., Econf, Phys. lett. B, Chin. J. phys., Int. J. mod. phys. A, Phys. rev. D, Class. quantum grav., Jhep, Class. quantum grav., Class. quantum grav., Int. J. mod. phys. A, 17, 4635, (2002)
[9] Gibbons, G.W.; Damour, T.; Ruffini, R.; Damour, T.; Ruffini, R.; Garfinkle, D.; Giddings, S.B.; Strominger, A., Commun. math. phys., Phys. rev. lett., Phys. rev. D, Phys. rev. D, 49, 958, (1994)
[10] Ayón-Beato, E.; Garca, A., Phys. rev. lett., 80, 5056, (1998)
[11] Aurilia, A.; Denardo, G.; Legovini, F.; Spallucci, E.; Aurilia, A.; Denardo, G.; Legovini, F.; Spallucci, E.; Aurilia, A.; Kissack, R.S.; Mann, R.; Blau, S.K.; Guendelman, E.I.; Guth, A.H.; Farhi, E.; Guth, A.H.; Guven, J., Phys. lett. B, Nucl. phys. B, Phys. rev. D, Phys. rev. D, Nucl. phys. B, 339, 417, (1990)
[12] Dunne, G.V., and references therein
[13] Preparata, G.; Ruffini, R.; Xue, S.-S.; Ruffini, R., Astron. astrophys., 338, L87, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.