## Nearest interval, triangular and trapezoidal approximation of a fuzzy number preserving ambiguity.(English)Zbl 1258.03079

The paper shows how to approximate a fuzzy number in such a way that an average Euclidean distance between the original fuzzy number and its approximation is minimized under the condition of preservation of ambiguity. Here the ambiguity of a fuzzy number $$A$$ is expressed in the form $\int^1_0 \alpha(A_U(\alpha)- A_L(\alpha))\,d\alpha$ with $$A_U$$ and $$A_L$$ computed as $$A_U(\alpha)= \sup\{x\in \mathbb R\mid A(x)\geq \alpha\}$$ and $$A_L(\alpha)= \text{inf}\{x\in \mathbb R\mid A(x)\geq \alpha\}$$.
The study provides detailed formulas in case of approximation realized by (a) intervals, (b) triangular fuzzy numbers, and (c) trapezoidal fuzzy numbers.

### MSC:

 3e+72 Theory of fuzzy sets, etc. 2.6e+51 Fuzzy real analysis
Full Text:

### References:

 [1] Abbasbandy, S.; Amirfakhrian, M., The nearest approximation of a fuzzy quantity in parametric form, Applied mathematics and computation (New York), 172, 624-632, (2006) · Zbl 1097.41001 [2] Abbasbandy, S.; Amirfakhrian, M., The nearest trapezoidal form of a generalized left right fuzzy number, International journal of approximate reasoning, 43, 166-178, (2006) · Zbl 1112.03316 [3] Abbasbandy, S.; Asady, B., The nearest trapezoidal fuzzy number to a fuzzy quantity, Applied mathematics and computation (New York), 156, 381-386, (2004) · Zbl 1058.03516 [4] Abbasbandy, S.; Hajjiri, T., Weighted trapezoidal approximation-preserving core of a fuzzy number, Computers and mathematics with applications, 59, 3066-3077, (2010) · Zbl 1193.26026 [5] Allahviranloo, T.; Adabitabar Firozja, M., Note on “ trapezoidal approximation of fuzzy numbers”, Fuzzy sets and systems, 158, 755-756, (2007) · Zbl 1119.03340 [6] Ban, A.I., Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving the expected interval, Fuzzy sets and systems, 159, 1327-1344, (2008) · Zbl 1176.03024 [7] Ban, A.I., On the nearest parametric approximation of a fuzzy number-revisited, Fuzzy sets and systems, 160, 3027-3047, (2009) · Zbl 1183.03047 [8] Ban, A.I., Trapezoidal and triangular approximations of fuzzy numbers-inadvertences and corrections, Fuzzy sets and systems, 160, 3048-3058, (2009) · Zbl 1183.03048 [9] Ban, A.I., Remarks and corrections to the triangular approximations of fuzzy numbers using α-weighted valuations, Soft computing, 15, 351-361, (2011) · Zbl 1237.03033 [10] Ban, A.I.; Brândaş, A.; Coroianu, L.; Negruţiu, C.; Nica, O., Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value, Computers and mathematics with applications, 61, 1379-1401, (2011) · Zbl 1217.26064 [11] Ban, A.I.; Coroianu, L.; Grzegorzewski, P., Trapezoidal approximation and aggregation, Fuzzy sets and systems, 177, 45-59, (2011) · Zbl 1241.03059 [12] Ban, A.I.; Coroianu, L., Metric properties of the nearest extended parametric fuzzy number and applications, International journal of approximate reasoning, 52, 488-500, (2011) · Zbl 1229.03040 [13] A.I. Ban, L. Coroianu, Translation invariance and scale invariance of approximations of fuzzy numbers, in: 7th Conference of the European Society for Fuzzy Logic and Technology, Aix-Les-Bains, 18-22 July 2011. [14] Ban, A.I.; Coroianu, L.C., Discontinuity of the trapezoidal fuzzy number-valued operators preserving core, Computers and mathematics with applications, 62, 3103-3110, (2011) · Zbl 1232.26051 [15] Bobillo, F.; Straccia, U., Fuzzy ontology representation using OWL 2, International journal of approximate reasoning, 52, 1073-1094, (2011) [16] Bodjanova, S., Median value and Median interval of a fuzzy number, Information sciences, 172, 73-89, (2005) · Zbl 1074.03018 [17] Carlsson, C.; Fullér, R.; Heikkilä, M.; Majlender, P., A fuzzy approach to R& D project portfolio selection, International journal of approximate reasoning, 44, 93-105, (2007) · Zbl 1286.91146 [18] Chanas, S., On the interval approximation of a fuzzy number, Fuzzy sets and systems, 122, 353-356, (2001) · Zbl 1010.03523 [19] Chon, T.-Y.; Hsu, C.-L.; Chen, M.-C., A fuzzy multicriteria decision model for international tourist hotels location selection, International journal of hospitality management, 27, 293-301, (2008) [20] Chu, T.-C.; Liu, Y., An extension to fuzzy MCDM, Computers and mathematics with applications, 57, 445-454, (2009) · Zbl 1165.90697 [21] Coroianu, L., Best Lipschitz constant of the trapezoidal approximation operator preserving the expected interval, Fuzzy sets and systems, 165, 81-97, (2011) · Zbl 1226.03057 [22] Coroianu, L., Lipschitz functions and fuzzy number approximations, Fuzzy sets and systems, (2012) · Zbl 1258.26016 [23] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets. theory and applications, (1994), World Scientific Singapore · Zbl 0873.54019 [24] Delgado, M.; Vila, M.A.; Voxman, W., On a canonical representation of a fuzzy number, Fuzzy sets and systems, 93, 125-135, (1998) · Zbl 0916.04004 [25] Dubois, D.; Prade, H., The Mean value of a fuzzy number, Fuzzy sets and systems, 24, 279-300, (1987) · Zbl 0634.94026 [26] Grzegorzewski, P., Metrics and orders in space of fuzzy numbers, Fuzzy sets and systems, 97, 83-94, (1998) · Zbl 0930.03073 [27] Grzegorzewski, P., Nearest interval approximation of a fuzzy number, Fuzzy sets and systems, 130, 321-330, (2002) · Zbl 1011.03504 [28] Grzegorzewski, P.; Mrówka, E., Trapezoidal approximations of fuzzy numbers, Fuzzy sets and systems, 153, 115-135, (2005) · Zbl 1067.03508 [29] Grzegorzewski, P.; Mrówka, E., Trapezoidal approximations of fuzzy numbers-revisited, Fuzzy sets and systems, 158, 757-768, (2007) · Zbl 1119.03052 [30] Grzegorzewski, P., Trapezoidal approximations of fuzzy numbers preserving the expected interval-alghoritms and properties, Fuzzy sets and systems, 159, 1354-1364, (2008) · Zbl 1176.03031 [31] P. Grzegorzewski, New algorithms for trapezoidal approximation of fuzzy numbers preserving the expected interval, in: L. Magdalena, M. Ojeda, J.L. Verdegay (Eds.), Proceedings of 12th Conference Information Processing and Management of Uncertainty in Knowledge-Based Systems, Malaga, 2008, pp. 117-123. [32] P. Grzegorzewski, Intuitionistic fuzzy numbers-Principles, metrics and ranking, in: K.T. Atanassov, O. Hryniewicz, J. Kacprzyk (Eds.), Soft Computing. Foundations and Theoretical Aspects, Exit, Warszawa, 2004, pp. 235-249. [33] Heilpern, S., The expected value of a fuzzy number, Fuzzy sets and systems, 47, 81-86, (1992) · Zbl 0755.60004 [34] W. Karush, Minima of functions of several variables with inequalities as side constraints, M.Sc. Dissertation, University of Chicago, 1939. [35] Kasemi, N.; Ehsani, E.; Jaber, M.Y., An inventory model with backorders with fuzzy parameters and decision variables, International journal of approximate reasoning, 51, 964-972, (2010) · Zbl 1230.90018 [36] Kuhn, H.W.; Tucker, A.W., Nonlinear programming, (), 481-492 · Zbl 0044.05903 [37] Nasibov, E.N.; Peker, S., On the nearest parametric approximation of a fuzzy number, Fuzzy sets and systems, 159, 1365-1375, (2008) · Zbl 1176.03038 [38] Palacios, A.M.; Sánchez, L.; Couso, I., Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data, International journal of approximate reasoning, 52, 841-862, (2011) [39] Rockafellar, R.T., Convex analysis, (1970), Princeton University Press Princeton, NJ · Zbl 0229.90020 [40] Rudin, W., Real and complex analysis, (1986), McGraw-Hill New York [41] Starcezewski, J.T., Efficient triangular type-2 fuzzy logic systems, International journal of approximate reasoning, 50, 799-811, (2009) · Zbl 1191.68698 [42] Vijayan, T.; Kumaran, M., Fuzzy economic order time models with random demand, International journal of approximate reasoning, 50, 529-540, (2009) · Zbl 1183.90036 [43] Yeh, C.-T., A note on trapezoidal approximation of fuzzy numbers, Fuzzy sets and systems, 158, 747-754, (2007) · Zbl 1119.03057 [44] Yeh, C.-T., On improving trapezoidal and triangular approximations of fuzzy numbers, International journal of approximate reasoning, 48, 297-313, (2008) · Zbl 1189.03066 [45] Yeh, C.-T., Trapezoidal and triangular approximations preserving the expected interval, Fuzzy sets and systems, 159, 1345-1353, (2008) · Zbl 1176.03041 [46] Yeh, C.-T., Weighted trapezoidal and triangular approximations of fuzzy numbers, Fuzzy sets and systems, 160, 3059-3079, (2009) · Zbl 1183.03058 [47] Yeh, C.-T., Weighted semi-trapezoidal approximations of fuzzy numbers, Fuzzy sets and systems, 165, 61-80, (2011) · Zbl 1226.03058 [48] Zeng, W.; Li, H., Weighted triangular approximation of fuzzy numbers, International journal of approximate reasoning, 46, 137-150, (2007) · Zbl 1136.03332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.