×

zbMATH — the first resource for mathematics

Motivic invariants of \(p\)-adic fields. (English) Zbl 1258.14025
The author discusses algebro-geometric invariants for \(p\)-adic fields by stable homotopy theory. For the algebraic Johnson-Wilson spectra, which are introduced in the paper, the computations are carried out respectively for the \(E_2\) and \(E_{\infty }\) terms of the motivic Adams spectral sequences and for the coefficients of the 2-completions over \(p\)-adic fields.

MSC:
14F42 Motivic cohomology; motivic homotopy theory
19D50 Computations of higher \(K\)-theory of rings
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1090/S0894-0347-99-00317-3 · Zbl 0934.19001 · doi:10.1090/S0894-0347-99-00317-3
[2] DOI: 10.1112/blms/bdn124 · Zbl 1213.55006 · doi:10.1112/blms/bdn124
[3] Hu, Mem. Amer. Math. Soc. 161 (2003)
[4] Hu, J. 7 (2011)
[5] Hu, J. 7 (2011)
[6] Hu, null 22 pp 335– (2001)
[7] Dundas, null 8 pp 489– (2003)
[8] DOI: 10.2140/gt.2010.14.967 · Zbl 1206.14041 · doi:10.2140/gt.2010.14.967
[9] Cassels, Local fields 3 (1986) · doi:10.1017/CBO9781139171885
[10] DOI: 10.1007/s00222-002-0257-4 · Zbl 1030.55003 · doi:10.1007/s00222-002-0257-4
[11] Naumann, Doc. Math. 14 pp 551– (2009)
[12] DOI: 10.1007/BF02698831 · Zbl 0983.14007 · doi:10.1007/BF02698831
[13] Morel, null 35 pp 1– (2005)
[14] Morel, NATO Sci. Ser. II Math. Phys. Chem. 131 pp 219– (2004)
[15] Milnor, Annals of Mathematics Studies 72 (1971)
[16] DOI: 10.1007/BF01425486 · Zbl 0199.55501 · doi:10.1007/BF01425486
[17] May, A general algebraic approach to Steenrod operations 168 pp 153– (1970)
[18] Jardine, Doc. Math. 5 pp 445– (2000)
[19] DOI: 10.2307/2373662 · Zbl 0303.55003 · doi:10.2307/2373662
[20] Voevodsky, Publ. Math. Inst. Hautes Études Sci. 98 pp 1– (2003) · Zbl 1057.14027 · doi:10.1007/s10240-003-0009-z
[21] Voevodsky, Publ. Math. Inst. Hautes Études Sci. 98 pp 59– (2003) · Zbl 1057.14028 · doi:10.1007/s10240-003-0010-6
[22] Voevodsky, null pp 579– (1998)
[23] Vezzosi, Rend. Sem. Mat. Univ. Padova 106 pp 47– (2001)
[24] Ravenel, Pure and Applied Mathematics 121 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.