×

Resonances for matrix Schrödinger operators. (English) Zbl 1258.35068

Summary: We study the resonances of matrix Schrödinger operators, motivated by the Born-Oppenheimer approximation. We give a simple criterion for the potential to generate resonances. This criterion also gives the location of the resonances generated.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35A20 Analyticity in context of PDEs
35P05 General topics in linear spectral theory for PDEs
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians , Comm. Math. Phys. 22 (1971), 269–279. · Zbl 0219.47011
[2] J. M. Combes, P. Duclos, and R. Seiler, The Born-Oppenheimer Approximation , ed. C. G. Velo and A. Wightman, Plenum Press, New York, 1981.
[3] G. A. Hagedorn, Molecular propagation through electron energy level crossings , Mem. Amer. Math. Soc. 111 (1994), no. 536. · Zbl 0833.92025
[4] B. Helffer and A. Martinez, Comparaison entre les diverses notions de résonances , Helv. Phys. Acta 60 (1987), 992–1003.
[5] L. Hörmander, The Analysis of Linear Partial Differential Operators, I: Distribution Theory and Fourier Analysis , Grundlehren Math. Wiss. 256 , Springer, Berlin, 1983; II: Differential Operators with Constant Coefficients , Grundlehren Math. Wiss. 257 , Springer, Berlin, 1983; III: Pseudodifferential Operators , Grundlehren Math. Wiss. 274 , Springer, Berlin, 1985; IV: Fourier Integral Operators , Grundlehren Math. Wiss. 275 , Springer, Berlin, 1985.
[6] W. Hunziker, Distorsion analyticity and molecular resonances curves , Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 339–358. · Zbl 0619.46068
[7] M. Klein, A. Martinez, R. Seiler, and X. P. Wang, On the Born-Oppenheimer expansion for polyatomic molecules , Comm. Math. Phys. 143 (1992), 607–639. · Zbl 0754.35099
[8] A. Martinez, Cours de DEA, Les resonances , 1992–93.
[9] L. Nedelec, Asymptotique du nombre de résonances de l’opérateur de Schrödinger avec potentiel linéaire et matriciel , Math. Res. Lett. 4 (1997), 309–320. · Zbl 0920.35103
[10] D. Robert, Autour de l’approximation semi-classique , Progr. Math. 68 , Birkhäuser, Boston, 1983.
[11] J. Sjöstrand, Singularités analytiques microlocales , Astérisque 95 , Soc. Math. France, Paris, 1982, 1–166.
[12] –. –. –. –., “A trace formula for resonances and application to semi-classical Schrödinger operators” in Séminaire sur les équations aux dérivées partielles, 1996–1997. , École Polytech., Palaiseau, 1997, exp. no. 2.
[13] ——–, “A trace formula and review of some estimates for resonances” in Microlocal Analysis and Spectral Theory (Lucca, 1996) , NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490 , Kluwer, Dordrecht, 1997.
[14] ——–, Resonances for bottles and trace formulae , to appear in Math. Nachr. · Zbl 0979.35109
[15] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles , J. Amer. Math. Soc. 4 (1991), 729–769. JSTOR: · Zbl 0752.35046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.