Relatively hyperbolic groups. (English) Zbl 1259.20052

The author develops some of the foundations of the theory of relatively hyperbolic groups as originally formulated by M. Gromov in Chapter 8.6 of his article entitled Hyperbolic groups, [Essays in group theory, Publ., Math. Sci. Res. Inst. 8, 75-263 (1987; Zbl 0634.20015)]. Here is proved the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space. The other is that of a group which admits a cofinite action on a connected fine hyperbolic graph.
In the article is given a definition of a fine graph, i.e. it has only finitely many circuits of a given length containing any given edge. Moreover, there is shown how a relatively hyperbolic group can be assumed to act on a proper hyperbolic space of a particular geometric form.
Finally the author defines the boundary of a relatively hyperbolic group, and shows that the limit set of any geometrically finite action of the group is equivariantly homeomorphic to this boundary.
We should add that this very outstanding and valuable article was known since 1997 under the same title as a preprint of the author edited by the University of Southampton.


20F67 Hyperbolic groups and nonpositively curved groups
20F65 Geometric group theory
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
57M07 Topological methods in group theory
53A35 Non-Euclidean differential geometry


Zbl 0634.20015
Full Text: DOI


[1] DOI: 10.1073/pnas.55.2.251 · Zbl 0132.30801
[2] DOI: 10.1007/BF02392106 · Zbl 0277.30017
[3] B. H. Bowditch, Group Theory From a Geometrical View Point, eds. E. Ghys, A. Haefliger and A. Verjovsky (World Scientific, 1991) pp. 64–167.
[4] DOI: 10.1006/jfan.1993.1052 · Zbl 0789.57007
[5] Bowditch B. H., J. Differential Geom. 38 pp 559–
[6] DOI: 10.1215/S0012-7094-95-07709-6 · Zbl 0877.57018
[7] DOI: 10.2140/pjm.1996.172.1 · Zbl 0867.53039
[8] DOI: 10.1090/S0894-0347-98-00264-1 · Zbl 0906.20022
[9] DOI: 10.1515/9783110806861.23
[10] DOI: 10.1007/PL00004703 · Zbl 0926.20027
[11] DOI: 10.1090/S0002-9947-01-02835-5 · Zbl 1037.20041
[12] DOI: 10.1090/conm/372/06884
[13] Coornaert M., Lecture Notes in Mathematics 1441, in: Les Groupes Hyperboliques de Gromov (1990) · Zbl 0727.20018
[14] DOI: 10.1016/j.top.2005.03.003 · Zbl 1101.20025
[15] DOI: 10.1007/BF01388581 · Zbl 0572.20025
[16] DOI: 10.1007/s000390050075 · Zbl 0985.20027
[17] Freden E. M., Ann. Acad. Sci. Fenn. Ser. A Math. 20 pp 333–
[18] DOI: 10.1090/S1088-4173-97-00011-8 · Zbl 0983.57029
[19] Gehring F. W., Proc. London Math. Soc. 55 pp 331–
[20] DOI: 10.1007/s00039-009-0718-7 · Zbl 1226.20037
[21] DOI: 10.1112/jlms/54.2.261 · Zbl 0861.20033
[22] DOI: 10.1007/978-1-4684-9167-8
[23] DOI: 10.2307/1970456 · Zbl 0161.27405
[24] DOI: 10.1007/978-1-4613-9586-7_3
[25] DOI: 10.1007/s11856-008-1070-6 · Zbl 1211.20038
[26] DOI: 10.1215/S0012-7094-36-00246-6 · Zbl 0015.10201
[27] DOI: 10.2307/1971059 · Zbl 0282.30014
[28] DOI: 10.1007/s002220050343 · Zbl 0941.32012
[29] Osin D. V., Mem. Amer. Math. Soc. 179
[30] H. Short, Group Theory From a Geometrical View Point, eds. E. Ghys, A. Haefliger and A. Verjovsky (World Scientific, 1991) pp. 3–63.
[31] Szczepański A., Michigan Math. J. 45 pp 611–
[32] DOI: 10.1007/BF02698805 · Zbl 0572.30036
[33] Tukia P., New Zealand J. Math. 23 pp 157–
[34] Tukia P., J. Reine. Angew. Math. 501 pp 71–
[35] Yaman A., J. Reine. Angew. Math. 506 pp 41–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.