×

zbMATH — the first resource for mathematics

Synchronization analysis of two coupled complex networks with time delays. (English) Zbl 1259.34074
Summary: This paper studies the synchronized motions between two complex networks with time delays, which include individual inner synchronization in each network and outer synchronization between two networks. Based on the Lyapunov stability theory and the linear matrix equality (LMI), a synchronous criterion for inner synchronization inside each network is derived. Numerical examples are given which fit the theoretical analysis. In addition, the involved numerical results show that the delays between two networks have little effect on inner synchronization. It is also shown that synchronous motions within each network or between two networks are not enhanced if individual intranetwork connections are allowed.

MSC:
34K25 Asymptotic theory of functional-differential equations
34D06 Synchronization of solutions to ordinary differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34K20 Stability theory of functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nature 393 (6684) pp 440– (1998) · Zbl 1368.05139 · doi:10.1038/30918
[2] DOI: 10.1126/science.286.5439.509 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[3] DOI: 10.1103/PhysRevLett.96.034101 · doi:10.1103/PhysRevLett.96.034101
[4] DOI: 10.1209/epl/i2004-10365-4 · doi:10.1209/epl/i2004-10365-4
[5] DOI: 10.1016/j.physa.2003.10.052 · doi:10.1016/j.physa.2003.10.052
[6] DOI: 10.1016/j.physa.2008.05.056 · doi:10.1016/j.physa.2008.05.056
[7] Progress of Theoretical Physics 114 (4) pp 749– (2005) · Zbl 1094.34056 · doi:10.1143/PTP.114.749
[8] DOI: 10.1016/j.physleta.2008.05.077 · Zbl 1221.34075 · doi:10.1016/j.physleta.2008.05.077
[9] DOI: 10.1103/PhysRevE.79.056207 · doi:10.1103/PhysRevE.79.056207
[10] Chaos 19 (4) (2009)
[11] DOI: 10.1103/PhysRevE.76.046204 · doi:10.1103/PhysRevE.76.046204
[12] DOI: 10.1103/PhysRevE.80.016212 · doi:10.1103/PhysRevE.80.016212
[13] DOI: 10.1007/s11571-010-9118-9 · doi:10.1007/s11571-010-9118-9
[14] DOI: 10.1103/PhysRevE.76.056114 · doi:10.1103/PhysRevE.76.056114
[15] Automatica 44 (4) pp 1028– (2008) · Zbl 1283.93017 · doi:10.1016/j.automatica.2007.08.005
[16] DOI: 10.1016/j.physleta.2010.05.054 · Zbl 1238.92015 · doi:10.1016/j.physleta.2010.05.054
[17] DOI: 10.1016/j.physd.2005.09.005 · Zbl 1097.34053 · doi:10.1016/j.physd.2005.09.005
[18] DOI: 10.1016/j.physa.2008.05.047 · doi:10.1016/j.physa.2008.05.047
[19] DOI: 10.1088/0256-307X/26/1/010501 · doi:10.1088/0256-307X/26/1/010501
[20] DOI: 10.1016/j.physleta.2009.03.001 · Zbl 1228.05267 · doi:10.1016/j.physleta.2009.03.001
[21] DOI: 10.1063/1.3072787 · Zbl 1311.34119 · doi:10.1063/1.3072787
[22] DOI: 10.1103/PhysRevLett.105.254101 · doi:10.1103/PhysRevLett.105.254101
[23] DOI: 10.1088/0253-6102/47/6/022 · Zbl 06681440 · doi:10.1088/0253-6102/47/6/022
[24] DOI: 10.1109/TNN.2008.2003250 · doi:10.1109/TNN.2008.2003250
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.