×

zbMATH — the first resource for mathematics

A simple proof of \(L^q\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. II: Weak solutions. (English) Zbl 1260.35111
Summary: This is the second of two papers (for Part I see [ibid., No. 2, 573–583 (2013; Zbl 1261.35106)]) in which simple proofs of \(L^q\)-estimates of solutions to the steady-state three-dimensional Oseen and Stokes equations in a rotating frame of reference are given. In this part, estimates are established in terms of data in homogeneous Sobolev spaces of negative order.

MSC:
35Q30 Navier-Stokes equations
35B45 A priori estimates in context of PDEs
76D07 Stokes and related (Oseen, etc.) flows
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reinhard Farwig, An \?^\?-analysis of viscous fluid flow past a rotating obstacle, Tohoku Math. J. (2) 58 (2006), no. 1, 129 – 147. · Zbl 1136.76340
[2] Reinhard Farwig, Toshiaki Hishida, and Detlef Müller, \?^\?-theory of a singular ”winding” integral operator arising from fluid dynamics, Pacific J. Math. 215 (2004), no. 2, 297 – 312. · Zbl 1057.35028 · doi:10.2140/pjm.2004.215.297 · doi.org
[3] Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994. Linearized steady problems. Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, Springer Tracts in Natural Philosophy, vol. 39, Springer-Verlag, New York, 1994. Nonlinear steady problems. · Zbl 0949.35004
[4] Giovanni P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 653 – 791. · Zbl 1230.76016
[5] Giovanni P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle, J. Elasticity 71 (2003), no. 1-3, 1 – 31. Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III, Vol. II. · Zbl 1156.76367 · doi:10.1023/B:ELAS.0000005543.00407.5e · doi.org
[6] Giovanni P. Galdi and Mads Kyed, A simple proof of \( L^{q}\)-estimates for the steady-state Oseen and Stokes equations in a rotating frame. Part I: Strong solutions, 2011. To appear in Proc. Amer. Math. Soc. · Zbl 1261.35106
[7] Giovanni P. Galdi and Mads Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 21 – 58. · Zbl 1229.35176 · doi:10.1007/s00205-010-0350-6 · doi.org
[8] Toshiaki Hishida, \?^\? estimates of weak solutions to the stationary Stokes equations around a rotating body, J. Math. Soc. Japan 58 (2006), no. 3, 743 – 767. · Zbl 1184.35241
[9] Joanna Rencławowicz and Wojciech M. Zajączkowski , Parabolic and Navier-Stokes equations. Part 1, Banach Center Publications, vol. 81, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2008. Papers from the conference held in Bȩdlewo, September 10 – 17, 2006. · Zbl 1111.35046
[10] S. Kračmar and Š. Nečasová, \?^\?-approach of weak solutions to stationary rotating Oseen equations in exterior domains, Quart. Appl. Math. 68 (2010), no. 3, 421 – 437. · Zbl 1258.76058
[11] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. · Zbl 0184.52603
[12] Ana Leonor Silvestre, On the existence of steady flows of a Navier-Stokes liquid around a moving rigid body, Math. Methods Appl. Sci. 27 (2004), no. 12, 1399 – 1409. · Zbl 1061.35078 · doi:10.1002/mma.509 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.