zbMATH — the first resource for mathematics

SMCHR: satisfiability modulo constraint handling rules. (English) Zbl 1260.68059
Summary: Constraint handling rules (CHRs) are a high-level rule-based programming language for specification and implementation of constraint solvers. CHR manipulates a global store representing a flat conjunction of constraints. By default, CHR does not support goals with a more complex propositional structure including disjunction, negation, etc., or CHR relies on the host system to provide such features.
In this paper we introduce satisfiability modulo constraint handling rules (SMCHR): a tight integration of CHR with a modern Boolean satisfiability (SAT) solver for quantifier-free formulae with an arbitrary propositional structure. SMCHR is essentially a satisfiability modulo theories (SMT) solver where the theory \(T\) is implemented in CHR. The execution algorithm of SMCHR is based on lazy clause generation, where a new clause for the SAT solver is generated whenever a rule is applied. We shall also explore the practical aspects of building an SMCHR system, including extending a “built-in” constraint solver supporting equality with unification and justifications.

68N17 Logic programming
Full Text: DOI
[1] Een, Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability Testing (2003)
[2] DOI: 10.1007/978-3-540-92243-8_3 · Zbl 1229.68025 · doi:10.1007/978-3-540-92243-8_3
[3] Duck, International Conference on Logic Programming pp 90– (2004) · doi:10.1007/978-3-540-27775-0_7
[4] DOI: 10.1017/S1471068411000494 · Zbl 1244.68023 · doi:10.1017/S1471068411000494
[5] Holzbaur, Proceedings of 1992 International Symposium on Programming Language Implementation and Logic Programming pp 260– (1992)
[6] DOI: 10.1016/S0743-1066(96)00065-9 · Zbl 0877.68020 · doi:10.1016/S0743-1066(96)00065-9
[7] DOI: 10.1007/10704567_7 · doi:10.1007/10704567_7
[8] DOI: 10.1017/S1471068409990123 · Zbl 1186.68096 · doi:10.1017/S1471068409990123
[9] Sarna-Starosta, Proceedings of the 5 pp 3– (2008)
[10] DOI: 10.1007/s10601-008-9064-x · Zbl 1192.68654 · doi:10.1007/s10601-008-9064-x
[11] Demoen, Proceedings of the Sixteenth International Conference on Logic Programming pp 260– (1999)
[12] DOI: 10.1145/1217856.1217859 · Zbl 1326.68164 · doi:10.1145/1217856.1217859
[13] DOI: 10.1145/1995376.1995394 · doi:10.1145/1995376.1995394
[14] DOI: 10.1002/spe.4380180902 · doi:10.1002/spe.4380180902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.