×

zbMATH — the first resource for mathematics

Robust reliable control for a near space vehicle with parametric uncertainties and actuator faults. (English) Zbl 1260.93099
Summary: Based on fuzzy control techniques, this article is concerned with the problem of robust reliable control for a Near Space Vehicle (NSV) with parametric uncertainties and actuator faults. The nonlinear dynamics of a NSV is represented by the Takagi–Sugeno fuzzy models, and then the actuator fault model and fuzzy state-space observer are developed. Next, the fuzzy observer-based robust reliable control strategy is proposed. It is proved that the fuzzy control systems for the NSV is reliable in the sense that the closed-loop system is asymptotically stable and the actuator components can operate well in the presence of some actuator faults. The developed theoretical results are in the form of linear matrix inequalities, which can be readily solved via standard numerical software. Finally, simulation results are given to illustrate the applicability of the proposed approach.

MSC:
93C42 Fuzzy control/observation systems
93B35 Sensitivity (robustness)
93C41 Control/observation systems with incomplete information
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ban XJ, International Journal of Innovative Computing, Information and Control 3 pp 1087– (2007)
[2] Chen J, Robust Model-based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001
[3] DOI: 10.1109/TFUZZ.2006.883415 · Zbl 05452695
[4] Gao ZF, ICIC Express Letters 4 pp 177– (2010)
[5] DOI: 10.1109/TSMCB.2008.2003449
[6] DOI: 10.1109/TFUZZ.2008.924315
[7] DOI: 10.1109/TFUZZ.2008.924206
[8] Keshmiri S, AIAA Modeling and Simulation Technologies Conference and Exhibit (2004)
[9] DOI: 10.1109/TAC.2006.878732 · Zbl 1366.93694
[10] Lee, JW, Lee, HH, Kim, JK and Park, HB. Robust and Non-fragile Fuzzy Controller Design for Discrete-time Systems with Parameter Uncertainties and Time Delay. Proceedings of the IEEE International Conference on Information and Automation. 2009. pp.722–727.
[11] DOI: 10.1109/91.919258
[12] DOI: 10.1109/87.974340
[13] DOI: 10.1109/TFUZZ.2005.861602 · Zbl 05452547
[14] Mahmoud M, ICIC Express Letters 2 pp 213– (2008)
[15] Mahmoud M, ICIC Express Letters 3 pp 1– (2009)
[16] Mustapha O, International Journal of Innovative Computing, Information and Control 5 pp 1313– (2009)
[17] DOI: 10.1016/j.ins.2005.02.005 · Zbl 1177.93055
[18] DOI: 10.1109/TFUZZ.2007.894983 · Zbl 05516307
[19] DOI: 10.1016/j.fss.2007.08.009 · Zbl 1170.93347
[20] DOI: 10.1016/j.automatica.2007.04.016 · Zbl 1138.49029
[21] Tanaka K, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach (2001)
[22] DOI: 10.1016/j.automatica.2007.03.019 · Zbl 1132.93331
[23] DOI: 10.1016/j.engappai.2007.07.009
[24] Wang YH, Journal of Uncertain Systems 1 pp 291– (2007)
[25] DOI: 10.1007/s12555-009-0401-7
[26] DOI: 10.1109/TSMCB.2004.828198
[27] DOI: 10.1109/TSMCB.2003.817038
[28] DOI: 10.1016/j.sigpro.2009.03.011 · Zbl 1178.93141
[29] Xue W, International Journal of Innovative Computing, Information and Control 4 pp 3161– (2008)
[30] DOI: 10.1016/S1004-4132(08)60156-5 · Zbl 1228.93031
[31] DOI: 10.1080/00207720701645313 · Zbl 1138.93366
[32] DOI: 10.1080/00207720802017834 · Zbl 1215.94101
[33] DOI: 10.1016/j.arcontrol.2008.03.008
[34] DOI: 10.1016/j.jprocont.2008.12.008
[35] DOI: 10.1080/00207720802556237 · Zbl 1172.93405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.