Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. (English) Zbl 1261.76056

Summary: We introduce a novel loosely coupled-type algorithm for fluid-structure interaction between blood flow and thin vascular walls. This algorithm successfully deals with the difficulties associated with the “added mass effect”, which is known to be the cause of numerical instabilities in fluid-structure interaction problems involving fluid and structure of comparable densities. Our algorithm is based on a time-discretization via operator splitting which is applied, in a novel way, to separate the fluid sub-problem from the structure elastodynamics sub-problem. In contrast with traditional loosely-coupled schemes, no iterations are necessary between the fluid and structure sub-problems; this is due to the fact that our novel splitting strategy uses the “added mass effect” to stabilize rather than to destabilize the numerical algorithm. This stabilizing effect is obtained by employing the kinematic lateral boundary condition to establish a tight link between the velocities of the fluid and of the structure in each sub-problem. The stability of the scheme is discussed on a simplified benchmark problem and we use energy arguments to show that the proposed scheme is unconditionally stable. Due to the crucial role played by the kinematic lateral boundary condition, the proposed algorithm is named the “kinematically coupled scheme”.


76Z05 Physiological flows
92C35 Physiological flow
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F05 Thermal effects in solid mechanics
74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI


[1] Baaijens, F., A fictitious domain/mortar element method for fluid – structure interaction, Int. J. numer. meth. fluids, 35, 743-761, (2001) · Zbl 0979.76044
[2] Badia, S.; Nobile, F.; Vergara, C., Fluid – structure partitioned procedures based on Robin transmission conditions, J. comput. phys., 227, 7027-7051, (2008) · Zbl 1140.74010
[3] Badia, S.; Quaini, A.; Quarteroni, A., Splitting methods based on algebraic factorization for fluid – structure interaction, SIAM J. sci. comput., 30, 4, 1778-1805, (2008) · Zbl 1368.74021
[4] Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory algorithms and computations, Comput. mech., 43, 3-37, (2008) · Zbl 1169.74015
[5] Bazilevs, Y.; Calo, V.M.; Zhang, Y.; Hughes, T.J.R., Isogeometric fluid – structure interaction analysis with applications to arterial blood flow, Comput. mech., 38, 4-5, 310-322, (2006) · Zbl 1161.74020
[6] Bercovier, M.; Pironneau, O., Error estimates for finite element method solution of the Stokes problem in primitive variables, Numer. math., 33, 211-224, (1979) · Zbl 0423.65058
[7] V.A. Bokil, Computational methods for wave propagation problems on unbounded domains, Ph.D. Thesis, Department of Mathematics, University of Houston, 2003.
[8] E. Burman, M. Fernández, Stabilization of explicit coupling in fluid – structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Eng. (2008), doi: 10.1016/j.cma.2008.10.012.
[9] Canic, S.; Hartley, C.; Rosenstrauch, D.; Tambaca, J.; Guidoboni, G.; Mikelic, A., Blood flow in compliant arteries: an effective viscoelastic reduced model numerics and experimental validation, Ann. biomed. eng., 34, 9, 575-592, (2006)
[10] Canic, S.; Tambaca, J.; Guidoboni, G.; Mikelic, A.; Hartley, C.; Rosenstrauch, D., Blood flow in compliant arteries: an effective viscoelastic reduced model numerics and experimental validation, SIAM J. appl. math., 67, 164-193, (2006)
[11] Causin, P.; Gerbeau, J.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid – structure problems, Comput. methods appl. mech. eng., 194, 4506-4527, (2005) · Zbl 1101.74027
[12] Cavallini, N.; Caleffi, V.; Coscia, V., Finite volume and WENO scheme in one-dimensional vascular system modelling, Comput. math. appl., 56, 9, 2382-2397, (2008) · Zbl 1165.76364
[13] Cervera, M.; Codina, R.; Galindo, M., On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems, Eng. comput., 13, 6, 4-30, (1996) · Zbl 0983.74576
[14] Cottet, G.-H.; Maitre, E.; Milcent, T., Eulerian formulation and level set models for incompressible fluid – structure interaction, ESAIM - math. model. numer. anal., 42, 3, 471-492, (2008) · Zbl 1163.76040
[15] Deparis, S.; Discacciati, M.; Fourestey, G.; Quarteroni, A., Fluid – structure algorithms based on steklov – poincaré operators, Comput. methods appl. mech. eng., 195, 5797-5812, (2006) · Zbl 1124.76026
[16] Deparis, S.; Fernandez, M.; Formaggia, L., Acceleration of a fixed point algorithm for a fluid – structure interaction using transpiration condition, Math. model. numer. anal., 37, 4, 601-616, (2003) · Zbl 1118.74315
[17] J. Donea, Arbitrary Lagrangian-Eulerian finite element methods, in: Computational Methods for Transient Analysis, North-Holland, Amsterdam, 1983, pp. 473-516.
[18] Fang, H.; Wang, Z.; Lin, Z.; Liu, M., Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. rev. E, 65, 051925.1-051925.11, (2002)
[19] Fauci, L.; Dillon, R., Biofluidmechanics of reproduction, Ann. rev. fluid mech., 38, 371-394, (2006) · Zbl 1100.76071
[20] Feng, Z.-G.; Michaelides, E., The immersed boundary-lattice Boltzmann method for solving fluid – particles interaction problem, J. comput. phys., 195, 2, 602-628, (2004) · Zbl 1115.76395
[21] Fernández, M.; Gerbeau, J.-F.; Grandmont, C., A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Int. J. numer. methods eng., 69, 4, 794-821, (2007) · Zbl 1194.74393
[22] Fernández, M.; Moubachir, M., A Newton method using exact Jacobians for solving fluid – structure coupling, Comput. struct., 83, 2-3, 127-142, (2005)
[23] Figueroa, C.; Vignon-Clementel, I.; Jansen, K.E.; Hughes, T.; Taylor, C., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. methods appl. mech. eng., 195, 5685-5706, (2006) · Zbl 1126.76029
[24] Fogelson, A.; Guy, R., Platelet-wall interactions in continuum models of platelet thrombosis: formulation and numerical solution, Math. med. biol., 21, 293-334, (2004) · Zbl 1071.92015
[25] Formaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D navier – stokes equations for flow problems in compliant vessels, Comput. methods appl. mech. eng., 191, 6-7, 561-582, (2001) · Zbl 1007.74035
[26] Gerbeau, J.; Vidrascu, M., A quasi-Newton algorithm based on a reduced model for fluid – structure interactions problems in blood flows, Math. model. numer. anal., 37, 4, 631-648, (2003) · Zbl 1070.74047
[27] R. Glowinski, Finite element methods for incompressible viscous flow, in: P.G. Ciarlet, J.-L. Lions (Eds.), Handbook of Numerical Analysis, vol. 6, North-Holland, Amsterdam, 2003, pp. 3-1176. · Zbl 1040.76001
[28] Glowinski, R.; Dean, E.; Guidoboni, G.; Juarez, H.; Pan, T.-W., Applications of operator-splitting methods to the direct simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic monge – ampère equation, Jpn. J. indus. appl. math., 25, 1-63, (2008) · Zbl 1141.76043
[29] R. Glowinski, G. Guidoboni, On the preconditioned conjugate gradient solution of a Stokes problem with Robin-type boundary conditions, C.R. Math., in press, doi:10.1016/j.crma.2009.05.014. · Zbl 1177.35149
[30] Glowinski, R.; Guidoboni, G., Hopf bifurcation in viscous incompressible flow down an inclined plane: a numerical approach, J. math. fluid mech., 10, 434-454, (2008) · Zbl 1162.76344
[31] Glowinski, R.; Guidoboni, G.; Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J. comput. phys., 216, 1, 76-91, (2006) · Zbl 1090.76041
[32] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Canic, S.; Lapin, S., A kinematically coupled time-splitting scheme for fluid – structure interaction in blood flow, Appl. math. lett., 22, 684-688, (2009) · Zbl 1162.74012
[33] Hansbo, P., Nitsche’s method for interface problems in computational mechanics, GAMM-mitt, 28, 2, 183-206, (2005) · Zbl 1179.65147
[34] Heil, M., An efficient solver for the fully coupled solution of large-displacement fluid – structure interaction problems, Comput. methods appl. mech. eng., 193, 1-23, (2004) · Zbl 1137.74439
[35] Heywood, J.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible navier – stokes equations, Int. J. numer. methods fluids, 22, 325-352, (1996) · Zbl 0863.76016
[36] Hughes, T.; Liu, W.; Zimmermann, T., Lagrangian – eulerian finite element formulation for incompressible viscous flows, Comput. methods appl. mech. eng., 29, 329-349, (1981) · Zbl 0482.76039
[37] Krafczyk, M.; Cerrolaza, M.; Schulz, M.; Rank, E., Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice Boltzmann methods, J. biomech., 31, 5, 453-462, (1998)
[38] Krafczyk, M.; Tolke, J.; Rank, E.; Schulz, M., Two-dimensional simulation of fluid – structure interaction using lattice Boltzmann methods, Comput. struct., 79, 22-25, 2031-2037, (2001)
[39] Leuprecht, A.; Perktold, K.; Prosi, M.; Berk, T.; Trubel, W.; Schima, H., Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts, J. biomech., 35, 2, 225-236, (2002)
[40] Lim, S.; Peskin, C., Simulations of the whirling instability by the immersed boundary method, SIAM J. sci. comput., 25, 2066-2083, (2004) · Zbl 1133.65300
[41] G. Marchuk, Splitting and alternating direction methods, in: P.G. Ciarlet, J.-L. Lions (Eds.), Handbook of Numerical Analysis, vol. I, North-Holland, Amsterdam, 1990, pp. 197-462 (Chapter 3). · Zbl 0875.65049
[42] Matthies, H.; Steindorf, J., Numerical efficiency of different partitioned methods for fluid – structure interaction, Z. angew. math. mech., 2, 80, 557-558, (2000) · Zbl 0951.74629
[43] Miller, L.; Peskin, C., A computational fluid dynamics study of ‘clap and fling’ in the smallest insects, J. exp. biol., 208, 2, 195-212, (2005)
[44] F. Nobile, Numerical approximation of fluid – structure interaction problems with application to haemodynamics, Ph.D. Thesis, EPFL, Switzerland, 2001.
[45] Nobile, F.; Vergara, C., An effective fluid – structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. sci. comput., 30, 2, 731-763, (2008) · Zbl 1168.74038
[46] Pan, T.-W.; Glowinski, R., A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by navier – stokes equations, Comput. fluid mech. J., 9, 28-42, (2000)
[47] Peskin, C., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220-252, (1977) · Zbl 0403.76100
[48] Peskin, C.; McQueen, D.M., A three-dimensional computational method for blood flow in the heart - I immersed elastic fibers in a viscous incompressible fluid, J. comput. phys., 81, 2, 372-405, (1989) · Zbl 0668.76159
[49] Quaini, A.; Quarteroni, A., A semi-implicit approach for fluid – structure interaction based on an algebraic fractional step method, Math. models methods appl. sci., 17, 6, 957-983, (2007) · Zbl 1388.74041
[50] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems models and methods, Comput. visual. sci., 2, 163-197, (2000) · Zbl 1096.76042
[51] Tallec, P.L.; Mouro, J., Fluid – structure interaction with large structural displacements, Comput. methods appl. mech. eng., 190, 3039-3067, (2001) · Zbl 1001.74040
[52] van Loon, R.; Anderson, P.; de Hart, J.; Baaijens, F., A combined fictitious domain/adaptive meshing method for fluid – structure interaction in heart valves, Int. J. numer. meth. fluids., 46, 533-544, (2004) · Zbl 1060.76582
[53] Veneziani, A., Boundary conditions for blood flow problems, Proc. enumath, 97, (1998) · Zbl 1075.76699
[54] Zhao, S.; Xu, X.; Collins, M., The numerical analysis of fluid – solid interactions for blood flow in arterial structures part 2: development of coupled fluid-solid algorithms, Proc. instn. mech. eng. part H, 212, 241-252, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.