×

zbMATH — the first resource for mathematics

Statistical convergence of double sequences in locally solid Riesz spaces. (English) Zbl 1262.40005
Summary: Recently, the notion of statistical convergence was studied in a locally solid Riesz space by Albayrak and Pehlivan. In this paper, we define and study statistical \(\tau\)-convergence, statistical \(\tau\)-Cauchy and \(S^\ast(\tau)\)-convergence of double sequences in a locally solid Riesz space.

MSC:
40J05 Summability in abstract structures (should also be assigned at least one other classification number from Section 40-XX)
40B05 Multiple sequences and series (should also be assigned at least one other classification number in this section)
40A35 Ideal and statistical convergence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Fast, “Sur la convergence statistique,” Colloquium Mathematicum, vol. 2, pp. 241-244, 1951. · Zbl 0044.33605 · eudml:209960
[2] H. Steinhaus, “Sur la convergence ordinaire et la convergence asymptotique,” Colloquium Mathematicum, vol. 2, pp. 73-34, 1951.
[3] A. Zygmund, Trigonometric Series, Cambridge University Press, New York, NY, USA, 1st edition, 1959. · Zbl 0085.05601
[4] G. G. Lorentz, “A contribution to the theory of divergent sequences,” Acta Mathematica, vol. 80, pp. 167-190, 1948. · Zbl 0031.29501 · doi:10.1007/BF02393648
[5] J. A. Fridy, “On statistical convergence,” Analysis, vol. 5, no. 4, pp. 301-313, 1985. · Zbl 0588.40001
[6] R. \cColak and \cC. A. Bekta\cs, “\lambda -statistical convergence of order \alpha ,” Acta Mathematica Scientia Series B, vol. 31, no. 3, pp. 953-959, 2011. · Zbl 1240.40016 · doi:10.1016/S0252-9602(11)60288-9
[7] V. Kumar and M. Mursaleen, “On (\lambda ,\mu )-statistical convergence of double sequences on intuitionistic fuzzy normed spaces,” Filomat, vol. 25, no. 2, pp. 109-120, 2011. · Zbl 1299.40009 · doi:10.2298/FIL1102109K
[8] S. A. Mohiuddine and Q. M. D. Lohani, “On generalized statistical convergence in intuitionistic fuzzy normed space,” Chaos, Solitons & Fractals, vol. 42, no. 3, pp. 1731-1737, 2009. · Zbl 1200.46067 · doi:10.1016/j.chaos.2009.03.086
[9] S. A. Mohiuddine and M. Aiyub, “Lacunary statistical convergence in random 2-normed spaces,” Applied Mathematics & Information Sciences, vol. 6, no. 3, pp. 581-585, 2012.
[10] M. Mursaleen and A. Alotaibi, “On I-convergence in random 2-normed spaces,” Mathematica Slovaca, vol. 61, no. 6, pp. 933-940, 2011. · Zbl 1289.40028 · doi:10.2478/s12175-011-0059-5
[11] S. A. Mohuiddine, A. Alotaibi, and S. M. Alsulami, “Ideal convergence of double sequences in 2 random 2-normed spaces,” Advances in Difference Equations, vol. 2012, article 149, 2012. · Zbl 1346.40001
[12] M. Mursaleen and S. A. Mohiuddine, “On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 142-149, 2009. · Zbl 1183.46070 · doi:10.1016/j.cam.2009.07.005
[13] M. Mursaleen and S. A. Mohiuddine, “On ideal convergence of double sequences in probabilistic normed spaces,” Mathematical Reports, vol. 12, no. 4, pp. 359-371, 2010. · Zbl 1240.40032
[14] M. Mursaleen and S. A. Mohiuddine, “On ideal convergence in probabilistic normed spaces,” Mathematica Slovaca, vol. 62, no. 1, pp. 49-62, 2012. · Zbl 1274.40034 · doi:10.2478/s12175-011-0071-9
[15] M. Mursaleen, S. A. Mohiuddine, and O. H. H. Edely, “On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 603-611, 2010. · Zbl 1189.40003 · doi:10.1016/j.camwa.2009.11.002
[16] E. Sava\cs and S. A. Mohiuddine, “\lambda \?-statistically convergent double sequences in probabilistic normed spaces,” Mathematica Slovaca, vol. 62, no. 1, pp. 99-108, 2012. · Zbl 1274.40016 · doi:10.2478/s12175-011-0075-5
[17] I. J. Maddox, “Statistical convergence in a locally convex space,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 104, no. 1, pp. 141-145, 1988. · Zbl 0674.40008 · doi:10.1017/S0305004100065312
[18] H. Cakalli, “On statistical convergence in topological groups,” Pure and Applied Mathematika Sciences, vol. 43, no. 1-2, pp. 27-31, 1996. · Zbl 0876.40002
[19] H. \cCakalli and E. Sava\cs, “Statistical convergence of double sequences in topological groups,” Journal of Computational Analysis and Applications, vol. 12, no. 2, pp. 421-426, 2010. · Zbl 1204.40006
[20] S. A. Mohiuddine and E. Sava\cs, “Lacunary statistically convergent double sequences in probabilistic normed spaces,” Annali dell’Universita di Ferrara. In press. · Zbl 1309.40004 · doi:10.1007/s11565-012-0157-5
[21] M. Mursaleen and S. A. Mohiuddine, “Statistical convergence of double sequences in intuitionistic fuzzy normed spaces,” Chaos, Solitons & Fractals, vol. 41, no. 5, pp. 2414-2421, 2009. · Zbl 1198.40007 · doi:10.1016/j.chaos.2008.09.018
[22] S. A. Mohiuddine, H. \cSevli, and M. Cancan, “Statistical convergence in fuzzy 2-normed space,” Journal of Computational Analysis and Applications, vol. 12, no. 4, pp. 787-798, 2010. · Zbl 1198.40002
[23] M. Mursaleen, “On statistical convergence in random 2-normed spaces,” Acta Scientiarum Mathematicarum, vol. 76, no. 1-2, pp. 101-109, 2010. · Zbl 1274.40015
[24] H. Albayrak and S. Pehlivan, “Statistical convergence and statistical continuity on locally solid Riesz spaces,” Topology and its Applications, vol. 159, no. 7, pp. 1887-1893, 2012. · Zbl 1244.40002 · doi:10.1016/j.topol.2011.04.026
[25] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer, Berlin, Germany, 1997. · Zbl 0878.47022 · doi:10.1007/978-3-642-60637-3
[26] G. T. Roberts, “Topologies in vector lattices,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 533-546, 1952. · Zbl 0047.10503
[27] A. Pringsheim, “Zur Theorie der zweifach unendlichen Zahlenfolgen,” Mathematische Annalen, vol. 53, no. 3, pp. 289-321, 1900. · JFM 31.0249.01 · doi:10.1007/BF01448977
[28] M. Mursaleen, C. \cCakan, S. A. Mohiuddine, and E. Sava\cs, “Generalized statistical convergence and statistical core of double sequences,” Acta Mathematica Sinica, vol. 26, no. 11, pp. 2131-2144, 2010. · Zbl 1219.40004 · doi:10.1007/s10114-010-9050-2
[29] M. Mursaleen and O. H. H. Edely, “Generalized statistical convergence,” Information Sciences, vol. 162, no. 3-4, pp. 287-294, 2004. · Zbl 1062.40003 · doi:10.1016/j.ins.2003.09.011
[30] Mursaleen and O. H. H. Edely, “Statistical convergence of double sequences,” Journal of Mathematical Analysis and Applications, vol. 288, no. 1, pp. 223-231, 2003. · Zbl 1032.40001 · doi:10.1016/j.jmaa.2003.08.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.