×

zbMATH — the first resource for mathematics

Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions. (English) Zbl 1262.80089
Summary: Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

MSC:
80A25 Combustion
80A30 Chemical kinetics in thermodynamics and heat transfer
65L05 Numerical methods for initial value problems involving ordinary differential equations
65F10 Iterative numerical methods for linear systems
80M25 Other numerical methods (thermodynamics) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Warnatz J., Combustion (2006)
[2] DOI: 10.1017/CBO9780511610103
[3] DOI: 10.1016/0010-2180(93)90083-F
[4] Poinsot T., Theoretical and Numerical Combustion (2005)
[5] Curran, H.J., Pitz, W.J. and Westbrook, C.K. 2002. UCRL-WEB-204236.
[6] DOI: 10.1016/S0010-2180(97)00282-4
[7] DOI: 10.1016/j.combustflame.2008.03.003
[8] DOI: 10.1016/j.combustflame.2009.10.013
[9] DOI: 10.1080/00102208508960376
[10] DOI: 10.1080/00102209308924120
[11] DOI: 10.1016/j.pecs.2008.10.002
[12] DOI: 10.1016/0021-9991(87)90001-5 · Zbl 0614.65078
[13] DOI: 10.1007/978-3-642-05221-7 · Zbl 1192.65097
[14] DOI: 10.1145/355626.355636 · Zbl 0311.65049
[15] DOI: 10.1137/0910062 · Zbl 0677.65075
[16] DOI: 10.1016/0097-8485(93)80011-2
[17] DOI: 10.1017/S0962492910000048 · Zbl 1242.65109
[18] DOI: 10.1016/j.jcp.2005.08.032 · Zbl 1089.65063
[19] DOI: 10.1137/0729014 · Zbl 0749.65030
[20] DOI: 10.1137/S0036142995280572 · Zbl 0888.65032
[21] DOI: 10.1146/annurev.pc.45.100194.001045
[22] DOI: 10.1006/jcph.1994.1007 · Zbl 0792.76062
[23] DOI: 10.1007/BF01060992
[24] DOI: 10.1364/OL.16.000787
[25] DOI: 10.1086/338699
[26] Schiesser W. E., The Numerical Method of Lines: Integration of Partial Differential Equations (1991) · Zbl 0763.65076
[27] Hochbruck M., J. Sci. Comput. 19 (5) pp 1552– (1998)
[28] Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V. and Qin, Z. 1999. http://www.me.berkeley.edu/gri_mech
[29] DOI: 10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0
[30] DOI: 10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
[31] DOI: 10.1021/jp994074c
[32] DOI: 10.1016/j.proci.2004.08.096
[33] DOI: 10.1016/S0010-2180(97)00275-7
[34] DOI: 10.1016/j.proci.2006.08.041
[35] 2010. The Mathworks, Inc., MATLAB® version 7.9.0. Natick, Massachusetts.
[36] Kee R. J., Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics (1989)
[37] DOI: 10.1007/s00211-003-0496-3 · Zbl 1060.65105
[38] DOI: 10.1137/040611434 · Zbl 1093.65052
[39] DOI: 10.1145/285861.285868 · Zbl 0917.65063
[40] DOI: 10.1017/S0962492900002932
[41] DOI: 10.1137/S00361445024180 · Zbl 1030.65029
[42] DOI: 10.1007/s10543-006-0077-9 · Zbl 1103.65030
[43] DOI: 10.1137/0913071 · Zbl 0757.65101
[44] Niesen J., A Krylov subspace algorithm for evaluating the {\(\phi\)}-functions appearing in exponential integrators (2011) · Zbl 1365.65185
[45] DOI: 10.1137/1.9780898719604 · Zbl 0934.65030
[46] DOI: 10.1137/090768539 · Zbl 1178.65040
[47] Horn R. A., Topics in Matrix Analysis (1994) · Zbl 0801.15001
[48] Lam S. H., Recent Advances in the Aerospace Sciences pp 3– (1985)
[49] DOI: 10.1007/BF01386294 · Zbl 0102.01502
[50] Golub G. H., Matrix Computations (1996) · Zbl 0865.65009
[51] Lu T., 46th AIAA Aerospace Sciences Meeting and Exhibit (2008)
[52] Krogh F. T., J. Assoc. Comput. Mach. 20 (4) pp 545– (1973) · Zbl 0292.65039
[53] DOI: 10.1007/BF02234758 · Zbl 0185.41302
[54] DOI: 10.1007/978-3-642-05221-7 · Zbl 1192.65097
[55] Byrne, G.D. and Thompson, S. VODE_F90 support page,http://www.radford.edu/thompson/vodef90web/, December 2005 release.
[56] DOI: 10.1145/198429.198437 · Zbl 0888.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.