zbMATH — the first resource for mathematics

Constrained dogleg methods for nonlinear systems with simple bounds. (English) Zbl 1262.90163
Summary: We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affine-scaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is named Constrained Dogleg method. It generates only strictly feasible iterates. Global and locally fast convergence is ensured under standard assumptions. The method has been implemented in the Matlab solver CoDoSol that supports several diagonal scalings in both spherical and elliptical trust region frameworks. We give a brief account of CoDoSol and report on the computational experience performed on a number of representative test problems.

90C30 Nonlinear programming
PDF BibTeX Cite
Full Text: DOI
[1] Bellavia, S., Macconi, M., Morini, B.: An affine scaling trust-region approach to bound-constrained nonlinear systems. Appl. Numer. Math. 44, 257–280 (2003) · Zbl 1018.65067
[2] Bellavia, S., Macconi, M., Morini, B.: STRSCNE: A scaled trust-region solver for constrained nonlinear equations. Comput. Optim. Appl. 28, 31–50 (2004) · Zbl 1056.90128
[3] Bellavia, S., Macconi, M., Pieraccini, S.: On affine scaling inexact dogleg methods for bound-constrained nonlinear systems. Tech. Rep. 5/2009 (2009) · Zbl 1262.90163
[4] Bellavia, S., Morini, B.: An interior global method for nonlinear systems with simple bounds. Optim. Methods Softw. 20, 1–22 (2005) · Zbl 1073.01515
[5] Bellavia, S., Morini, B.: Subspace trust-region methods for large bound constrained nonlinear equations. SIAM J. Numer. Anal. 44, 1535–1555 (2006) · Zbl 1128.65033
[6] Coleman, T.F., Li, Y.: An interior trust-region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996) · Zbl 0855.65063
[7] Davis, T.A.: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004) · Zbl 1072.65037
[8] Dirkse, S.P., Ferris, M.C.: MCPLIB: A collection of nonlinear mixed complementary problems. Optim. Methods Softw. 5, 319–345 (1995)
[9] Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002) · Zbl 1049.90004
[10] Floudas, C.A., et al.: Handbook of Test Problems in Local and Global Optimization. Nonconvex Optimization and Its Applications, vol. 33. Kluwer Academic, Dordrecht (1999) · Zbl 0943.90001
[11] Francisco, J.B., Krejic, N., Martinez, J.M.: An interior-point method for solving box-constrained underdetermined nonlinear systems. J. Comput. Appl. Math. 177, 67–88 (2005) · Zbl 1064.65035
[12] Hager, W.W., Mair, B.A., Zhang, H.: An affine-scaling interior-point CBB method for box-constrained optimization. Math. Program., Ser. A 119, 1–32 (2009) · Zbl 1168.90007
[13] Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumptions. Math. Program. 86, 615–635 (1999) · Zbl 0945.49023
[14] Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin (1981) · Zbl 0452.90038
[15] Kanzow, C., Klug, A.: On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Comput. Optim. Appl. 35, 177–197 (2006) · Zbl 1151.90552
[16] Kanzow, C., Klug, A.: An interior-point affine-scaling trust-region method for semismooth equations with box constraints. Comput. Optim. Appl. 37, 329–353 (2007) · Zbl 1180.90219
[17] Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics. SIAM, Philadelphia (1995) · Zbl 0832.65046
[18] Kelley, C.T., Northrup, J.I.: A pointwise Quasi-Newton method for integral equations. SIAM J. Numer. Anal. 25, 1138–1155 (1988) · Zbl 0661.65142
[19] Kozakevich, D.N., Martinez, J.M., Santos, S.A.: Solving nonlinear systems of equations with simple bounds. J. Comput. Appl. Math. 16, 215–235 (1997) · Zbl 0896.65041
[20] Luksan, L., Vlcek, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization. Technical Report N. 767, Institute of Computer Science, Academy of Sciences of the Czech Republic (1999)
[21] Macconi, M., Morini, B., Porcelli, M.: A Gauss-Newton method for solving bound-constrained underdetermined nonlinear systems. Optim. Methods Softw. 24, 219–235 (2009) · Zbl 1181.90289
[22] Macconi, M., Morini, B., Porcelli, M.: Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities. Appl. Numer. Math. 59, 859–876 (2009) · Zbl 1165.65030
[23] Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems, Applied. Math. Comput. 22, 333–361 (1987) · Zbl 0616.65057
[24] Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical tests problems. ACM Trans. Math. Softw. 16, 143–151 (1990) · Zbl 0900.65153
[25] Moré, J.J.: A collection of nonlinear model problems. Lect. Appl. Math. 26, 723–762 (1990) · Zbl 0695.65031
[26] Moré, J.J., Garbow, B., Hillstrom, K.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 136–140 (1981) · Zbl 0454.65049
[27] Pawlowski, R.P., Simonis, J.P., Walker, H.F., Shadid, J.N.: Inexact Newton dogleg methods. SIAM J. Numer. Anal. 46, 2112–2132 (2008) · Zbl 1183.65055
[28] Tsoulos, I.G., Stavrakoudis, A.: On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal., Real World Appl. 11, 2465–2471 (2010) · Zbl 1193.65078
[29] Wachter, A., Biegler, L.T.: Failure of global convergence for a class of interior point methods for nonlinear programming. Math. Program., Ser. A 88, 565–574 (2000) · Zbl 0963.65063
[30] Wang, T., Monteiro, R.D.C., Pang, J.-S.: An interior point potential reduction method for constrained equations. Math. Program. 74, 159–195 (1996) · Zbl 0855.90128
[31] Zhu, D.: An affine scaling trust-region algorithm with interior backtracking technique for solving bound-constrained nonlinear systems. J. Comput. Appl. Math. 184, 343–361 (2005) · Zbl 1087.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.