×

An adaptive homotopy approach for non-selfadjoint eigenvalue problems. (English) Zbl 1263.65106

This paper deals with adaptive algorithms for eigenvalue problems associated with non-selfadjoint partial differential operators based on the combination of the adaptive homotopy method with mesh adaptivity and iterative matrix eigenvalue solvers.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
65F15 Numerical computation of eigenvalues and eigenvectors of matrices

Software:

Matlab; ARPACK; JDQR; JDQZ; na14
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, Inc., New Jersey (2000) · Zbl 1008.65076
[2] Aitken A.C.: On Bernoulli’s numerical solution of algebraic equations. Proc. Royal Soc. Edinb. 46, 289–305 (1926) · JFM 52.0098.05
[3] Alonso A., Dello Russo A., Padra C., Rodríguez R.: A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems. Adv. Comput. Math. 15(1–4), 25– (2001) · Zbl 1043.74041 · doi:10.1023/A:1014243118190
[4] Argentati M.E., Knyazev A.V., Paige C.C., Panayotov I.: Bounds on changes in Ritz values for a perturbed invariant subspace of a Hermitian matrix. SIAM J. Matrix Anal. Appl. 30(2), 548–559 (2008) · Zbl 1171.15018 · doi:10.1137/070684628
[5] Babuška I., Osborn J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52(186), 275–297 (1989) · Zbl 0675.65108
[6] Babuška, I., Osborn J.E.: Eigenvalue Problems. Handbook of Numerical Analysis, vol. 2 (1991) · Zbl 0875.65087
[7] Bai Z., Demmel J., Dongarra J., Ruhe A., van der Vorst H.: Templates for the Solution of Algebraic Eigenvalue Problem. A Practical Guide. SIAM, Philadelphia (2000) · Zbl 0965.65058
[8] Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Basel (2003) · Zbl 1020.65058
[9] Boffi D., Fernandes P., Gastaldi L., Perugia I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999) · Zbl 1025.78014 · doi:10.1137/S003614299731853X
[10] Braack M., Ern A.: A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1(2), 221–238 (2003) · Zbl 1050.65100 · doi:10.1137/S1540345902410482
[11] Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods Texts in Applied Mathematics. 2nd edn. Springer, Berlin (2002) · Zbl 1012.65115
[12] Cartensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Preprint 489, DFG Research Center Matheon, Straße des 17. Juni 136, D-10623 Berlin (2008)
[13] Chatelin F.: Spectral Approximation of Linear Operators. Academic Press, New York (1983) · Zbl 0517.65036
[14] Dörfler W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996) · Zbl 0854.65090 · doi:10.1137/0733054
[15] Durán R.G., Padra C., Rodriguez R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003) · Zbl 1072.65144 · doi:10.1142/S0218202503002878
[16] Evans L.C.: Partial differential equations. American Mathematical Society, Providence (2000) · Zbl 0933.35001
[17] Garau E.M., Morin P., Zuppa C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009) · Zbl 1184.65100 · doi:10.1142/S0218202509003590
[18] Gedicke J., Carstensen C.: A posteriori error estimators for non-symmetric eigenvalue problems. Preprint 659, DFG Research Center Matheon, Str. des 17. Juni 136, D-10623 Berlin, (2009) · Zbl 1295.65108
[19] Giani S., Graham I.G.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47(2), 1067–1091 (2009) · Zbl 1191.65147 · doi:10.1137/070697264
[20] Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996) · Zbl 0865.65009
[21] Grubišić L., Ovall J.S.: On estimators for eigenvalue/eigenvector approximations. Math. Comp. 78(266), 739–770 (2009) · Zbl 1198.65221 · doi:10.1090/S0025-5718-08-02181-9
[22] Hairer E., Nørsett S.P., Wanner G.: Solving Ordinary Differential Equations I: Nonstiff Problems. 2nd edn. Springer, Berlin (1993) · Zbl 0789.65048
[23] Heiserer, D., Zimmer, H., Schäfer, M., Holzheuer C., Kondziella R.: Formoptimierung in der frühen Phase der Karosserieentwicklung. Vdi-Berichte 1846, Würzburg (2004)
[24] Hetmaniuk U.L., Lehoucq R.B.: Uniform accuracy of eigenpairs from a shift-invert lanczos method. SIAM J. Matrix Anal. Appl. 28, 927–948 (2006) · Zbl 1130.65053 · doi:10.1137/050629288
[25] Heuveline V., Rannacher R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comp. Math. 15, 107–138 (2001) · Zbl 0995.65111 · doi:10.1023/A:1014291224961
[26] Kato T.: Pertubation Theory for linear Operators. Springer, Berlin (1980)
[27] Knyazev A.V.: New estimates for Ritz vectors. Math. Comp. 66(219), 985–995 (1997) · Zbl 0870.65045 · doi:10.1090/S0025-5718-97-00855-7
[28] Knyazev A.V., Argentati M.E.: Rayleigh-Ritz majorization error bounds with applications to fem. SIAM. J. Matrix Anal. Appl. 31(3), 1521–1537 (2010) · Zbl 1201.65054 · doi:10.1137/08072574X
[29] Knyazev A.V., Osborn J.E.: New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 43(6), 2647–2667 (2006) · Zbl 1111.65100 · doi:10.1137/040613044
[30] Larson M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000) · Zbl 0974.65100 · doi:10.1137/S0036142997320164
[31] Larsson S., Thomée V.: Partial Differential Equations with Numerical Methods. Springer, Berlin (2003) · Zbl 1025.65002
[32] Lehoucq R.B., Sorensen D.C., Yang C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998) · Zbl 0901.65021
[33] Li T.Y., Zeng Z.: Homotopy-determinant algorithm for solving non-symmetric eigenvalue problems. Math. Comp. 59, 483–502 (1992) · Zbl 0783.65034 · doi:10.1090/S0025-5718-1992-1151113-4
[34] Li T.Y., Zeng Z.: The homotopy continuation algorithm for the real nonsymmetric eigenproblem: Further development and implementation. SIAM J. Sci. Comp. 20, 1627–1651 (1999) · Zbl 0936.65040 · doi:10.1137/S1064827597318228
[35] Li T.Y., Zeng Z., Cong L.: Solving eigenvalue problems of real nonsymmetrric matrices with real homotopies. SIAM J. Numer. Anal. 29, 229–248 (1992) · Zbl 0749.65028 · doi:10.1137/0729015
[36] Lui S.H., Golub G.H.: Homotopy method for the numerical solution of the eigenvalue problem of slef-adjoint partial differential operators. Numer. Algorithms 10, 363–378 (1995) · Zbl 0836.65115 · doi:10.1007/BF02140775
[37] Lui S.H., Keller H.B., Kwok T.W.C.: Homotopy method for the large sparse real nonsymmetric eigenvalue problem. SIAM J. Matrix Anal. Appl. 18, 312–333 (1997) · Zbl 0872.65035 · doi:10.1137/S0895479894273900
[38] Mao D., Shen L., Zhou A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comp. Math. 25, 135–160 (2006) · Zbl 1103.65112 · doi:10.1007/s10444-004-7617-0
[39] MATLAB, Version 7.10.0.499 (R2010a). The MathWorks, inc., 24 Prime Park Way, Natick, MA 01760-1500, USA (2010)
[40] Mehrmann V., Miedlar A.: Adaptive computation of smallest eigenvalues of elliptic partial differential equations. Numer. Linear Algebra Appl. 18, 387–409 (2011) · Zbl 1249.65226 · doi:10.1002/nla.733
[41] Neymeyr K.: A posteriori error estimation for elliptic eigenproblems. Numer. Linear Algebra Appl. 9(4), 263–279 (2002) · Zbl 1071.65147 · doi:10.1002/nla.272
[42] Parlett B.N.: The symmetric eigenvalue problem. SIAM, Philadelphia (1998) · Zbl 0885.65039
[43] Raviart P.A., Thomas J.M.: Introduction á l’Analyse Numérique des Equations aux Dérivées Partielles. Masson, Paris (1983) · Zbl 0561.65069
[44] Saad Y.: Numerical methods for large eigenvalue problems. Manchester University Press, Manchester (1992) · Zbl 0991.65039
[45] Sauter S.: hp-finite elements for elliptic eigenvalue problems: error estimates which are explicit with respect to {\(\lambda\)}, h, and p. SIAM J. Numer. Anal. 48(1), 95–108 (2010) · Zbl 1211.65149 · doi:10.1137/070702515
[46] Stewart G.W., Sun J.G.: Matrix perturbation theory. Academic Press Inc., Boston (1990) · Zbl 0706.65013
[47] Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973) · Zbl 0356.65096
[48] Trefethen L.N., Betcke T.: Computed eigenmodes of planar regions. Contemp. Math. 412, 297–314 (2006) · Zbl 1107.65101 · doi:10.1090/conm/412/07783
[49] Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, San Francisco (1996) · Zbl 0853.65108
[50] Xu J., Zhou A.: A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70(233), 17–25 (2001) · Zbl 0959.65119 · doi:10.1090/S0025-5718-99-01180-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.