×

Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations. (English) Zbl 1263.93051

Summary: This paper aims to design full-order and reduced-order observers for one-sided Lipschitz nonlinear systems. The system under consideration is an extension of its known Lipschitz counterpart and possesses inherent advantages with respect to conservativeness. For such system, we first develop a novel Riccati equation approach to design a full-order observer, for which rigorous mathematical analysis is performed. Consequently, we show that the conditions under which a full-order observer exists also guarantee the existence of a reduced-order observer. A design method for the reduced-order observer that is dependent on the solution of the Riccati equation is then presented. The proposed conditions are easily and numerically tractable via standard numerical software. Furthermore, it is theoretically proven that the obtained conditions are less conservative than some existing ones in recent literature. The effectiveness of the proposed observers is illustrated via a simulative example.

MSC:

93B07 Observability
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations

Software:

RODAS
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Krener, A.; Respondek, W., Nonlinear obervers with linearizable error dynamics, SIAM J control optim, 23, 2, 197-216, (1985) · Zbl 0569.93035
[2] Arcak, M.; Kokotovic, P., Observer-based control of systems with slope-restricted nonlinearities, IEEE trans automat control, 46, 7, 1146-1151, (2001) · Zbl 1014.93033
[3] Arcak, M.; Kokotovic, P., Nonlinear observers: A circle criterion design and roubstness analsysis, Automatica, 37, 12, 1923-1930, (2001) · Zbl 0996.93010
[4] Starkov, K.E.; Coria, L.N.; Aguilar, L.T., On synchronization of chaotic systems based on the thau observer design, Commun nonlinear sci numer simulat, 17, 1, 17-25, (2012) · Zbl 1239.93018
[5] Ibrir, S., Circle-criterion approach to discrete-time nonlinear observer design, Automatica, 43, 8, 1432-1441, (2007) · Zbl 1130.93320
[6] Wang, H.; Zhu, X.J.; Gao, S.W.; Chen, Z.Y., Singular observer approach for chaotic synchronization and private communication, Commun nonlinear sci numer simulat, 16, 3, 1517-1523, (2011)
[7] Liu, Y., Robust adaptive observer for nonlinear sytems with unmodelled dynamcis, Automatica, 45, 8, 1891-1895, (2009) · Zbl 1185.93021
[8] Huang, J.; Han, Z.; Cai, X.; Liu, L., Adaptive full-order and reduced-order observers for the lur’e differential inclusion system, Commun nonlinear sci numer simulat, 16, 7, 2869-2879, (2011) · Zbl 1221.93036
[9] Xia, X.; Gao, W., Nonlinear observers design by observer error linearization, SIAM J control optim, 27, 1, 199-216, (1989) · Zbl 0667.93014
[10] Thau, F., Observing the state of nonlinear dynamic systems, Int J control, 17, 3, 471-479, (1973) · Zbl 0249.93006
[11] Rajamani, R., Observers for Lipschitz nonlinear systems, IEEE trans automat control, 43, 3, 397-401, (1998) · Zbl 0905.93009
[12] Zhu, F.; Han, Z., A note on observers for Lipschitz nonlinear systems, IEEE trans automat control, 47, 10, 1751-1754, (2002) · Zbl 1364.93104
[13] Chen, M.; Chen, C., Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances, IEEE trans automat control, 52, 12, 2365-2369, (2007) · Zbl 1366.93459
[14] Zemouche, A.; Boutayeb, M., Observer design for Lipschitz nonlinear systems: the discrete-time case, IEEE trans cricuits syst II: express briefs, 53, 8, 777-781, (2006)
[15] Zhang, W.; Su, H.; Zhu, F.; Yue, D., A note on observers for discrete-time Lipschitz nonlinear systems, IEEE trans cricuits syst II: express briefs, 59, 2, 123-127, (2012)
[16] Lu, G.P.; Ho WC, Daniel, Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach, IEEE trans cricuits syst II: express briefs, 53, 7, 563-567, (2006)
[17] Abbaszadeh, M.; Marquez, H.J., Nonlinear observer design for one-sided Lipschitz systems, Proc am control conf, 5284-5289, (2010)
[18] Phanomchoeng, G.; Rajamani, R., Observer design for Lipschitz nonlinear systems using Riccati equations, Proc am control conf, 6060-6065, (2010)
[19] Hairer, E.; Norsett, S.P.; Wanner, G., Solving ordinary differential equations II: stiff and DAE problems, (1993), Springer-Verlag
[20] Stuart, M.; Humphries, A.R., Dynamical systems and numerical analysis, (1998), Cambridge University Press · Zbl 0913.65068
[21] Dekker, K.; Verwer, J.G., Stability of Runge-Kutta methods for stiff nonlinear differetial equations, (1984), North-Holland · Zbl 0571.65057
[22] Donchev, T.; Rios, V.; Wolenski, P., Strong invariance and one-sided Lipschitz multifunctions, Nonlinear anal: theor methods appl, 60, 5, 849-862, (2005) · Zbl 1068.34010
[23] Hu, G., Observers for one-sided Lipschitz non-linear systems, IMA J math control info, 23, 4, 395-401, (2006) · Zbl 1113.93021
[24] Xu, M.; Hu, G.; Zhao, Y., Reduced-order observer design for one-sided Lipschitz nonlinear systems, IMA J math control info, 26, 3, 299-317, (2009) · Zbl 1179.93049
[25] Hu, G., A note on observer for one-sided Lipschitz non-linear systems, IMA J math control info, 25, 3, 297-303, (2008) · Zbl 1160.93006
[26] Zhao, Y.; Tao, J.; Shi, N.Z., A note on observer design for one-sided Lipschitz nonlinear systems, Syst control lett, 59, 1, 66-71, (2010) · Zbl 1186.93017
[27] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press · Zbl 0576.15001
[28] Peterson, I.H.; Hollot, C.V., A Riccati equation approach to the stabilization of uncertain linear sytems, Automatica, 22, 4, 397-411, (1986) · Zbl 0602.93055
[29] Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia · Zbl 0816.93004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.