×

zbMATH — the first resource for mathematics

A finite element variational multiscale method based on two local Gauss integrations for stationary conduction-convection problems. (English) Zbl 1264.76062
Summary: A new finite element variational multiscale (VMS) method based on two local Gauss integrations is proposed and analyzed for the stationary conduction-convection problems. The valuable feature of our method is that the action of stabilization operators can be performed locally at the element level with minimal additional cost. The theory analysis shows that our method is stable and has a good precision. Finally, the numerical test agrees completely with the theoretical expectations and the “ exact solution,” which show that our method is highly efficient for the stationary conduction-convection problems.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76R10 Free convection
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Chida, “Surface temperature of a flat plate of finite thickness under conjugate laminar forced convection heat transfer condition,” International Journal of Heat and Mass Transfer, vol. 43, no. 4, pp. 639-642, 1999. · Zbl 0949.76525
[2] J. A. M. García, J. M. G. Cabeza, and A. C. Rodríguez, “Two-dimensional non-linear inverse heat conduction problem based on the singular value decomposition,” International Journal of Thermal Sciences, vol. 48, no. 6, pp. 1081-1093, 2009.
[3] D. C. Kim and Y. D. Choi, “Analysis of conduction-natural convection conjugate heat transfer in the gap between concentric cylinders under solar irradiation,” International Journal of Thermal Sciences, vol. 48, no. 6, pp. 1247-1258, 2009.
[4] Z. D. Luo, The Bases and Applications of Mixed Finite Element Methods, Science Press, Beijing, China, 2006.
[5] Z. D. Luo and X. M. Lu, “A least-squares Galerkin/Petrov mixed finite element method for stationary conduction-convection problems,” Mathematica Numerica Sinica, vol. 25, no. 2, pp. 231-244, 2003.
[6] C. P. Naveira, M. Lachi, R. M. Cotta, and J. Padet, “Hybrid formulation and solution for transient conjugated conduction-external convection,” International Journal of Heat and Mass Transfer, vol. 52, no. 1-2, pp. 112-123, 2009. · Zbl 1156.80357
[7] Q. W. Wang, M. Yang, and W. Q. Tao, “Natural convection in a square enclosure with an internal isolated vertical plate,” Wärme-und Stoffübertragung, vol. 29, no. 3, pp. 161-169, 1994.
[8] M. Yang, W. Q. Tao, Q. W. Wang, and S. S. Lue, “On identical problems of natural convection in enclosures and applications of the identity character,” Journal of Thermal Science, vol. 2, no. 2, pp. 116-125, 1993.
[9] E. DiBenedetto and A. Friedman, “Conduction-convection problems with change of phase,” Journal of Differential Equations, vol. 62, no. 2, pp. 129-185, 1986. · Zbl 0593.35085
[10] M. A. Christon, P. M. Gresho, and S. B. Sutton, “Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution),” International Journal for Numerical Methods in Fluids, vol. 40, no. 8, pp. 953-980, 2002. · Zbl 1025.76042
[11] M. S. Mesquita and M. J. S. de Lemos, “Optimal multigrid solutions of two-dimensional convection-conduction problems,” Applied Mathematics and Computation, vol. 152, no. 3, pp. 725-742, 2004. · Zbl 1077.65508
[12] N. B. Cheikh, B. B. Beya, and T. Lili, “A multigrid method for solving the Navier-Stokes/Boussinesq equations,” Communications in Numerical Methods in Engineering, vol. 24, no. 8, pp. 671-681, 2008. · Zbl 1159.76355
[13] Z. Luo, J. Chen, I. M. Navon, and J. Zhu, “An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems,” International Journal for Numerical Methods in Fluids, vol. 60, no. 4, pp. 409-436, 2009. · Zbl 1161.76032
[14] Z. Si, T. Zhang, and K. Wang, “A Newton iterative mixed finite element method for stationary conduction-convection problems,” International Journal of Computational Fluid Dynamics, vol. 24, no. 3, pp. 135-141, 2010. · Zbl 1206.65249
[15] Z. Si and Y. He, “A defect-correction mixed finite element method for stationary conduction-convection problems,” Mathematical Problems in Engineering, vol. 2011, Article ID 370192, 28 pages, 2011. · Zbl 1204.76021
[16] J. Boland and W. Layton, “Error analysis for finite element methods for steady natural convection problems,” Numerical Functional Analysis and Optimization, vol. 11, no. 5-6, pp. 449-483, 1990. · Zbl 0714.76090
[17] J. L. Guermond, “Stabilization of Galerkin approximations of transport equations by subgrid modelling,” Mathematical Modelling and Numerical Analysis, vol. 33, no. 6, pp. 1293-1316, 1999. · Zbl 0946.65112
[18] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. A. Wray, “The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence,” Physics of Fluids, vol. 13, no. 2, pp. 505-512, 2001. · Zbl 1184.76236
[19] T. Hughes, L. Mazzei, and K. Jansen, “Large eddy simulation and the variational multiscale method,” Computing and Visualization in Science, vol. 3, no. 1-2, pp. 47-59, 2000. · Zbl 0998.76040
[20] T. J. R. Hughes, “Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods,” Computer Methods in Applied Mechanics and Engineering, vol. 127, no. 1-4, pp. 387-401, 1995. · Zbl 0866.76044
[21] W. Layton, “A connection between subgrid scale eddy viscosity and mixed methods,” Applied Mathematics and Computation, vol. 133, no. 1, pp. 147-157, 2002. · Zbl 1024.76026
[22] V. John and S. Kaya, “A finite element variational multiscale method for the Navier-Stokes equations,” SIAM Journal on Scientific Computing, vol. 26, no. 5, pp. 1485-1503, 2005. · Zbl 1073.76054
[23] H. Zheng, Y. Hou, F. Shi, and L. Song, “A finite element variational multiscale method for incompressible flows based on two local gauss integrations,” Journal of Computational Physics, vol. 228, no. 16, pp. 5961-5977, 2009. · Zbl 1168.76028
[24] A. Masud and R. A. Khurram, “A multiscale finite element method for the incompressible Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 13-16, pp. 1750-1777, 2006. · Zbl 1178.76233
[25] J. Li, Y. He, and Z. Chen, “A new stabilized finite element method for the transient Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 1-4, pp. 22-35, 2007. · Zbl 1169.76392
[26] J. Li and Y. He, “A stabilized finite element method based on two local Gauss integrations for the Stokes equations,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 58-65, 2008. · Zbl 1132.35436
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.