×

zbMATH — the first resource for mathematics

Spontaneous supersymmetry breaking induced by vacuum condensates. (English) Zbl 1266.81110
Summary: We propose a novel mechanism of spontaneous supersymmetry breaking which relies upon a ubiquitous feature of Quantum Field Theory, vacuum condensates. Such condensates play a crucial role in many phenomena. Examples include Unruh effect, superconductors, particle mixing, and quantum dissipative systems. We argue that in all these phenomena supersymmetry, when present, is spontaneously broken. Evidence for our conjecture is given for the Wess-Zumino model, that can be considered as an approximation to the supersymmetric extensions of the above mentioned systems. The magnitude of the effect is estimated for a recently proposed experimental setup based on an optical lattice.

MSC:
81R40 Symmetry breaking in quantum theory
81Q60 Supersymmetry and quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Yu, Y.; Yang, K., Phys. rev. lett., 105, 150605, (2010)
[2] Fayet, P.; Iliopoulos, J., Phys. lett. B, 51, 461, (1974)
[3] O╩╝Raifeartaigh, L., Nucl. phys. B, 96, 331, (1975)
[4] Witten, E., Nucl. phys. B, 188, 513, (1981)
[5] Shadmi, Y.; Shirman, Y., Rev. mod. phys., 72, 25, (2000)
[6] Unruh, W.G., Phys. rev. D, 14, 870, (1976)
[7] Schwinger, J.S., Phys. rev., 82, 664, (1951)
[8] Bardeen, J.; Cooper, L.N.; Schrieffer, J.R., Phys. rev., 108, 1175, (1957)
[9] Iorio, A., Annals phys., 326, 1334, (2011)
[10] Takahasi, Y.; Umezawa, H., Collect. phenom., 2, 55, (1975)
[11] Blasone, M.; Henning, P.A.; Vitiello, G., Phys. lett. B, 451, 140, (1999)
[12] Blasone, M.; Capolupo, A.; Vitiello, G., Phys. rev. D, 66, 025033, (2002)
[13] Blasone, M.; Capolupo, A.; Romei, O.; Vitiello, G., Phys. rev. D, 63, 125015, (2001)
[14] Capolupo, A.; Ji, C.-R.; Mishchenko, Y.; Vitiello, G., Phys. lett. B, 594, 135, (2004)
[15] Capolupo, A.; Capozziello, S.; Vitiello, G., Phys. lett. A, 363, 53, (2007)
[16] Capolupo, A.; Capozziello, S.; Vitiello, G., Phys. lett. A, 373, 601, (2009)
[17] Capolupo, A.; Capozziello, S.; Vitiello, G.; Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.; Blasone, M.; Capolupo, A.; Vitiello, G.; Blasone, M.; Capolupo, A.; Capozziello, S.; Carloni, S.; Vitiello, G., Int. J. mod. phys. A, Nucl. instrum. meth. A, Prog. part. nucl. phys., Phys. lett. A, 323, 182, (2004)
[18] Celeghini, E.; Rasetti, M.; Vitiello, G., Annals phys., 215, 156, (1992)
[19] Capolupo, A.; Di Mauro, M.; Iorio, A., Phys. lett. A, 375, 3415, (2011)
[20] Das, A.K., Finite temperature field theory, (1997), World Scientific Singapore
[21] Buchholz, D.; Ojima, I., Nucl. phys. B, 498, 228, (1997)
[22] Mavromatos, N.E.; Sarkar, S.; Tarantino, W., Phys. rev. D, 84, 044050, (2011)
[23] Umezawa, H., Advanced field theory: micro, macro, and thermal physics, (1993), AIP New York, USA, 238 pp
[24] Wess, J.; Zumino, B., Phys. lett. B, 49, 52, (1974)
[25] Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A., Rev. mod. phys., 80, 787, (2008)
[26] Festuccia, G.; Seiberg, N., Jhep, 1106, 114, (2011)
[27] de Wit, B.; Herger, I., Lect. notes phys., 541, 79, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.