zbMATH — the first resource for mathematics

Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits. (English) Zbl 1266.93072
J. Comput. Syst. Sci. Int. 50, No. 4, 511-543 (2011); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2011, No. 4, 3-36 (2011).
Summary: An algorithm for searching hidden oscillations in dynamic systems is developed to help solving the Aizerman’s, Kalman’s and Markus-Yamabe’s conjectures well-known in control theory. The first step of the algorithm consists in applying modified harmonic linearization methods. A strict mathematical substantiation of these methods is given using special Poincare maps. Subsequent steps of the proposed algorithms rely on the modern applied theory of bifurcations and numerical methods of solving differential equations. These algorithms help find and localize hidden strange attractors (i.e., such that a basin of attraction of which does not contain neighborhoods of equilibria), as well as hidden periodic oscillations. One of these algorithms is used here to discover, for the first time, a hidden strange attractor in the dynamic system describing a nonlinear Chua’s circuit, viz. an electronic circuit with nonlinear feedback.

93C15 Control/observation systems governed by ordinary differential equations
93D20 Asymptotic stability in control theory
93C10 Nonlinear systems in control theory
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI
[1] M. A. Aizerman, ”On a Problem Concerning Stability in ”Large” of Dynamic Systems,” Usp. Mat. Nauk 4(4), 186–188 (1949).
[2] A. M. Letov, Stability of Nonlinear Control Systems (GTTI, Moscow, 1955) [in Russian].
[3] M. A. Aizerman and F. R. Gantmakher, Absolute Stability of Control Systems (Akad. Nauk SSSR, Moscow, 1963) [in Russian]. · Zbl 0198.12601
[4] S. L. Lefschetz, Stability of Nonlinear Control Systems (Academic, New York, London, 1965). · Zbl 0136.08801
[5] A. F. Filippov, Differential Equations with Different Right Sides (Nauka, Moscow, 1985) [in Russian].
[6] I. G. Malkin, ”On Stability of Automatic Control Systems,” Prikl. Mat. Mekh. 16(4), 495–499 (1952).
[7] N. P. Erugin, ”On a Problem of the Stability Theory of Automatic Control Systems,” Prikl. Mat. Mekh. 16(5), 620–628 (1952). · Zbl 0047.17904
[8] N. N. Krasovskii, ”Theorems on Stability of Motions Determined by a System of Two Equations,” Prikl. Mat. Mekh. 16(5), 547–554 (1952).
[9] V. A. Pliss, Certain Problems of Motion Stability (Leningr. Gos. Univ., Leningrad, 1958) [in Russian].
[10] V. A. Yakubovich, ”On Boundedness and Stability in Large of Solutions of Certain Nonlinear Differential Equations,” Dokl. Akad. Nauk SSSR 121(6), 984–986 (1958). · Zbl 0085.30702
[11] A. R. Efendiev and M. A. Balitinov, ”On Asymptotic Stability in Large of a Nonlinear System,” Differets. Uravneniya 4(4), 618 (1968). · Zbl 0235.34112
[12] G. A. Leonov, ”On Stability in Large of Nonlinear Systems in the Critical Case of Two Nonzero Roots,” Prikl. Mat. Mekh. 45(4), 752–755 (1981).
[13] R. E. Kalman, ”Physical and Mathematical Mechanisms of Instability in Nonlinear Automatic Control Systems,” Transactions of ASME 79, 553–566 (1957).
[14] G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency Methods for Nonlinear Analysis. Theory and Applications (World Sci., Singapore, 1996). · Zbl 0954.65091
[15] L. Markus and H. Yamabe, ”Global Stability Criteria for Differential Systems,” Osaka Math. J 12, 305–317 (1960). · Zbl 0096.28802
[16] A. A. Glutsyuk, ”Asymptotic Stability of Linearization of a Vector Field in the Plane Having Singular Points Implies Global Stability,” Funktsional’nyi Analiz i Ego Prilozhenie 29(4), 17–30 (1995).
[17] R. Fessler A Proof of the Two-dimensional Markus-Yamabe Stability Conjecture and a Generalization, Annedes. Polonici. Mathematici 62, 45–47 (1995). · Zbl 0835.34052 · doi:10.4064/ap-62-1-45-74
[18] C. Gutierrez, ”A Solution to the Bidimensional Global Asymptotic Stability Conjecture,” Ann. Inst. H. Poincare Anal. Non Lineaire 12, 627–671 (1995). · Zbl 0837.34057 · doi:10.1016/S0294-1449(16)30147-0
[19] A. Cima, A. Essen, A. Gasull, et al., Advances in Mathematics 131(2), 453–457 (1997). · Zbl 0896.34042 · doi:10.1006/aima.1997.1673
[20] G. A. Leonov, ”On the Necessity of a Frequency Condition of Absolute Stability of Stationary Systems in the Critical Case of a Pair of Purely Imaginaty Roots,” Dokl. Akad. Nauk SSSR 193(4), 756–759 (1970).
[21] E. Noldus, ”A Counterpart of Popov’s Theorem for the Existence of Periodic Solutions,” Int. J. Control 13, 705–719 (1971). · Zbl 0219.93014 · doi:10.1080/00207177108931977
[22] N. M. Krylov and N. N. Bogolyubov, New Methods of Nonlinear Mechanics (Gostekhteorizdat, Moscow, 1934) [in Russian].
[23] N. M. Krylov and N. N. Bogolyubov, Introduction to Nonlinear Mechanics (AN USSR, Kiev, 1937) [in Russian].
[24] M. A. Aizerman, Lecture on Automatic Control Theory (Fizmatgiz, Moscow, 1958) [in Russian].
[25] E. P. Popov, Computation of Nonlinear Automatic Systems Based on Harmonic Linearization (Sudpromgiz, Moscow, 1959) [in Russian].
[26] E. P. Popov and I. P. Pal’tov, Approximative Methods of Investigation of Nonlinear Automatic Systems (Fizmatgiz, Moscow, 1960) [in Russian].
[27] E. N. Rozenvasser, Oscillations of Nonlinear Systems (Nauka, Moscow, 1969) [in Russian]. · Zbl 0213.15501
[28] J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, New York, 1968; Mashinostroenie, Moscow, 1972). · Zbl 0177.12601
[29] E. P. Popov, The Theory of Nonlinear Automatic Regulation and Control Systems (Nauka, Moscow, 1979). · Zbl 0515.90028
[30] V. A. Besekerskii and E. P. Popov, Automatic Control Systems Theory (Nauka, Moscow, 1975) [in Russian].
[31] A. A. Pervozvanskii, Course of Automatic Control Theory (Nauka, Moscow, 1986) [in Russian].
[32] H. K. Khalil, Nonlinear Systems (Prentice Hall, New Jersey, 2002).
[33] Ya. Z. Tsypkin, Theory of Relay Automatic Control Systems (Gostekhizdat, Moscow, 1955) [in Russian].
[34] B. V. Bulgakov, ”Auto-Oscillations of Control Systems,” Prikl. Mat. Mekh. 7(2), 97–108 (1943). · Zbl 0061.19313
[35] B. V. Bulgakov, Oscillations (Gostekhizdat, Moscow, 1954) [in Russian].
[36] M. A. Aizerman, ”Physical Foundations of Application of Small parameter Methods to Solving Nonlinear Problems of Automatic Control Theory,” Avtom. Telemekh. 14(5), 597–603 (1953).
[37] E. D. Garber and E. N. Rozenvasser, ”On Investigation of Periodic Modes of Nonlinear Systems Based on Filter Hypothesis,” Avtom. Telemekh. 26(2), 277–287 (1965). · Zbl 0134.07603
[38] A. R. Bergen and R. L. Franks, ”Justification of the Describing Function Method,” SIAM J. Control 9(4), 568–589 (1971). · Zbl 0213.15302 · doi:10.1137/0309041
[39] A. I. Mees and A. R. Bergen, ”Describing Functions Revisited,” IEEE Trans. Autom. Control AC-20(4), 473–478 (1975). · Zbl 0309.93019 · doi:10.1109/TAC.1975.1101025
[40] B. Van der Pol, ”Forced Oscillations in a Circuit with Nonlinear Resistance (Receptance with Reactive Triode),” Edinburgh and Dublin Philosophical Magazine, 3, 65–80 (1927). · doi:10.1080/14786440108564176
[41] A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillations (Nauka, Moscow, 1937) [in Russian].
[42] J. J. Stoker, Nonlinear Vibrations in Mechanical and Electric Systems (Wiley, New York, 1995; Inostrannaya Literatura, Moscow, 1952) [in Russian].
[43] K. F. Teodorchik, Auto-Oscillation Systems, 3rd Ed. (GITTL, Moscow, 1952) [in Russian].
[44] G. S. Gorelik, Oscillations and Waves, 2nd Ed. (Fizmatlit, Moscow, 1959) [in Russian].
[45] G. A. Leonov, ”On Harmonic Linearization Method,” DAN. Mekhanika 424(4), 462–464 (2009). · Zbl 1199.93042
[46] G. A. Leonov, ”On Harmonic Linearization Method,” Avtom. Telemekh. 5, 65–75 (2009). · Zbl 1199.93042
[47] G. A. Leonov, ”On Aizerman’s Problem,” Avtom. Telemekh. 7, 37–49 (2009).
[48] G. A. Leonov, ”Efficient Methods of searching Periodic Oscillations in Dynamic Systems,” Prikl. Mat. Mekh. 74(1), 37–73 (2010).
[49] E. N. Lorenz, ”Deterministic Nonperiodic Flow,” J. Atmos. Sci. 20, 130–141 (1963). · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[50] O. E. Rössler, ”An Equation for Continuous Chaos,” Phys. Lett. 57A, 397–398 (1976). · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[51] G. A. Leonov, Control Theory (S.-Peterb. Gos. Univ., St. Petersburg, 2006) [in Russian].
[52] A. N. Kolmogorov and S. V. Fomin, Elements of Function Theory and Functional Analysis (FIZMATLIT, Moscow, 2004) [in Russian]. · Zbl 0090.08702
[53] G. A. Leonov, V. I. Vagaitsev, and N. V. Kuznetsov, ”An Algorithm of Localization of Chua Attractors Based on the Harmonic Linearization Method,” DAN. Matematika 433(3), 323–326 (2010). · Zbl 1251.37081
[54] V. I. Vagaitsev, N. V. Kuznetsov, and G. A. Leonov, ”Localization of Attractors of the Chua Generalized System Based on the Harmonic Linearization Method,” Vestnik Sankt-Peterburgskogo Universiteta 1(4), 62–76 (2010). · Zbl 1251.37081
[55] V. O. Bragin, N. V. Kuznetsov, and G. A. Leonov, ”Algorithm for Counterexamples Construction for Aizerman’s and Kalman’s Conjectures,” Proceedings of 4th IFAC Worlshop on Periodic Control System, 2010.
[56] G. A. Leonov, V. O. Bragin, and N. V. Kuznetsov, ”an Algorithm for Constructing Counterexamples to Kalman’s Problem,” DAN. Matematika 433(2), 163–166 (2010). · Zbl 1202.93099
[57] V. Blondel and A. Megretski, Unsolved Problems in Mathematical Systems and Control Theory (Princeton University Press, Princeton, 2004). · Zbl 1052.93002
[58] J. C. Hsu and A. U. Meyer, Modern Control Principles and Applications (McGraw-Hill, 1968). · Zbl 0177.12601
[59] L. C. Westphal, Handbook of Control Systems Engineering (Springer, Berlin, 2001).
[60] R. E. Fitts, ”Two Counterexamples to Aizerman’s Conjecture,” Trans. IEEE AC-11(3), 553–556 (1966).
[61] N. E. Barabanov, ”Mathematical Life in the USSR. In Leningrad Mathematical Society,” Usp. Mat. Nauk 37(1), 163–167 (1982).
[62] N. E. Barabanov, ”On Kalman’s Problem,” Sib. Mat. Zh. 29(3), 3–11 (1988).
[63] J. Bernat and J. Llibre, ”Counterexample to Kalman and Markus-Yamabe Conjectures in Dimension Larger Than 3,” Dynam. Contin. Discrete Impuls. Systems 2(3), 337–379 (1996). · Zbl 0889.34047
[64] A. A. Andronov and A. G. Maier, ”On the Vyshnegradkii Problem in the Theory of Direct Control,” Avtom. Telemekh. 8(5) (1947).
[65] A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Nonunique Equilibrium State (Nauka, Moscow, 1987) [in Russian].
[66] G. Meisters, A Biography of the Markus-Yamabe Conjecture, 1996, http://www.math.unl.edu/gmeisters1/papers/HK1996.pdf .
[67] A. A. Glutsyuk, ”Markus-Yamabe Problem in Global Stability: Two-Dimensional Proof and Tree-Dimensional Counterexample,” Usp. Mat. Nauk 53(2), 169–172 (1998). · doi:10.4213/rm12
[68] R. Genesio, A. Tesi, and F. Villoresi, ”A Frequency Approach for Analyzing and Controlling Chaos in Nonlinear Circuits,” IEEE Trans. on Circuits and Systems I-fundamental Theory and Applications 40(11), C. 819–828 (1993). · Zbl 0848.93029 · doi:10.1109/81.251820
[69] M. Basso, L. Giovanardi, R. Genesio, et al., ”An Approach for Stabilizing Periodic Orbits in Nonlinear Systems,” in Proceedings of European Control Conference, Karlsruhe, Germany, 1999. · Zbl 1002.93519
[70] L. O. Chua and G. N. Lin, ”Canonical Realization of Chua’s Circuit Family,” IEEE Trans. on Circuits and Systems 37(4), 885–902 (1990). · Zbl 0706.94026 · doi:10.1109/31.55064
[71] L. O. Chua, ”The Genesis of Chua’s Circuit,” Archiv fur Elektronik und Ubertragungstechnik 46, 250–257 (1992).
[72] L. O. Chua, ”A Zoo of Strange Attractors from the Canonical Chua’s Circuits,” in Proceedings of the 35th IEEE Midwest Symposium on Circuits and Systems, (Cat. No.92CH3099-9), Washington, USA, 1992, Vol. 2, pp. 916–926.
[73] L. O. Chua, ”Global Unfolding of Chua’s Circuit,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E76-A, 704–734 (1993).
[74] L. O. Chua, ”A Glimpse of Nonlinear Phenomena from Chua’s Oscillator,” Philosophical Transactions: Physical Sciences and Engineering 353, 3–12 (1701). · Zbl 0868.34029 · doi:10.1098/rsta.1995.0086
[75] L. O. Chua, L. Pivka, and C. W. Wu, ”A Universal Circuit for Studying Chaotic Phenomena,” Philosophical Transactions: Physical Sciences and Engineering 353(1701), 65–84 (1995). · Zbl 0870.58054 · doi:10.1098/rsta.1995.0091
[76] E. Bilotta and P. Pantano, ”A Gallery of Chua Attractors,” World Scientific Series on Nonlinear Science, Series A 61 (2008). · Zbl 1147.34036
[77] G. A. Leonov and N. V. Kuznetsov, ”Time-Varying Linearization and the Perron Effects,” Int. Journal of Bifurcation and Chaos 17(4), 1079–1107 (2007). · Zbl 1142.34033 · doi:10.1142/S0218127407017732
[78] G. Q. Zhong and F. Ayrom, ”Periodicity and Chaos in Chua’s Circuit,” IEEE Trans. on Circuits and Systems CAS-32(5), 501–503 (1985). · doi:10.1109/TCS.1985.1085728
[79] J. A. K. Suykens and J. Vandewalle, ”Generation of n-Double Scrolls (n = 1, 2, 3, 4, ...),” IEEE Trans. on Circuits and Systems,” I: Fundamental Theories and Applications 40(11), 861–867 (1993). · Zbl 0844.58063 · doi:10.1109/81.251829
[80] J. A. K. Suykens, A. Huang, and L. O. Chua, ”A Family of N-Scroll Attractors from a Generalized Chua’s Circuit,” AEU-Int. J. Electronics &amp; Communications 51(3), 131–138 (1997).
[81] M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, ”On the Realization of N-Scroll Attractors,” in Proceedings of IEEE International Symposium on Circuits and Systems, Orlando, USA, 1999, Vol. 5, pp. 483–486.
[82] M. E. Yalcin, J. A. K. Suykens, and J. Vandewalle, ”Experimental Confirmation of 3- and 5-Scroll Attractors from a Generalized Chua’s Circuit,” IEEE Trans. on Circuits and Systems,” Part I: Fundamental Theory and Applications 47(3), 425–429 (2000). · doi:10.1109/81.841929
[83] J. A. K. Suykens, M. E. Yalcin, and J. Vandewalle, ”A Generic Class of Chaotic and Hyperchaotic Circuits with Synchronization Methods,” Chaos in Circuits and Systems (2002).
[84] K. S. Tang, K. F. Man, G. Q. Zhong, et al., ”Some New Circuit Design for Chaos Generation,” Chaos in Circuits and Systems, Ser. B 11, 151–170 (2002). · doi:10.1142/9789812705303_0008
[85] K. S. Tang, G. Q. Zhong, K. F. Man, and G. Chen, ”A Systematic Approach to Generating N-Scroll Attractors,” Intern. J. Bifurcation and Chaos 12(12), 2907–2915 (2002). · doi:10.1142/S0218127402006230
[86] F. A. Savaci and S. Gunel, ”Harmonic Balance Analysis of the Generalized Chua’s Circuit,” Int. J. Bifurcation and Chaos 16(8), 2325–2332 (2006). · Zbl 1192.93048 · doi:10.1142/S0218127406016082
[87] N. V. Kuznetsov, G. A. Leonov, and V. I. Vagaitsev, ”Analytical-Numerical Method for Localization of Attractors of Generalization Chua System,” in Proceedings of 4th IFAC Workshop on Periodic Control Systems, Antalia, Turkey, 2010. · Zbl 1251.37081
[88] G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, ”Localization of Hidden Chua’s attractors,” Physics Letters A. 2011 (doi:10.1016/j.physleta.2011.04.037). · Zbl 1242.34102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.