##
**Adaptive synchronization and antisynchronization of a hyperchaotic complex Chen system with unknown parameters based on passive control.**
*(English)*
Zbl 1266.93087

Summary: This paper investigates the synchronization and antisynchronization problems of a hyperchaotic complex Chen system with unknown parameters based on the properties of a passive system. The essential conditions are derived under which the synchronization or antisynchronization error dynamical system could be equivalent to a passive system and be globally asymptotically stabilized at a zero equilibrium point via smooth state feedback. Corresponding parameter estimation update laws are obtained to estimate the unknown parameters as well. Numerical simulations verify the effectiveness of the theoretical analysis.

### MSC:

93C40 | Adaptive control/observation systems |

34D06 | Synchronization of solutions to ordinary differential equations |

PDF
BibTeX
XML
Cite

\textit{X. Zhou} et al., J. Appl. Math. 2013, Article ID 845253, 8 p. (2013; Zbl 1266.93087)

Full Text:
DOI

### References:

[1] | O. E. Rössler, “An equation for hyperchaos,” Physics Letters A, vol. 71, no. 2-3, pp. 155-157, 1979. · Zbl 0996.37502 |

[2] | T. Matsumoto, L. O. Chua, and K. Kobayashi, “Hyperchaos: laboratory experiment and numerical confirmation,” IEEETransactions on Circuits and Systems, vol. 33, no. 11, pp. 1143-1149, 1986. |

[3] | G. Grassi and S. Mascolo, “A system theory approach for designing cryptosystems based on hyperchaos,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 46, no. 9, pp. 1135-1138, 1999. · Zbl 0963.94022 |

[4] | H. Yin, Z. Chen, and Z. Yuan, “A blind watermarking algorithm based on hyperchaos and coset by quantizing wavelet transform coefficients,” International Journal of Innovative Computing, Information and Control, vol. 3, no. 6 B, pp. 1635-1643, 2007. |

[5] | C. X. Zhu, “A novel image encryption scheme based on improved hyperchaotic sequences,” Optics Communications, vol. 285, no. 1, pp. 29-37, 2012. |

[6] | A. C. Fowler, M. J. McGuinness, and J. D. Gibbon, “The complex Lorenz equations,” Physica D, vol. 4, no. 2, pp. 139-163, 1982. · Zbl 1194.37039 |

[7] | G. M. Mahmoud and E. E. Mahmoud, “Complete synchronization of chaotic complex nonlinear systems with uncertain parameters,” Nonlinear Dynamics, vol. 62, no. 4, pp. 875-882, 2010. · Zbl 1215.93114 |

[8] | L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821-824, 1990. · Zbl 0938.37019 |

[9] | S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, “The synchronization of chaotic systems,” Physics Reports A, vol. 366, no. 1-2, pp. 1-101, 2002. · Zbl 0995.37022 |

[10] | S. Liu and P. Liu, “Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters,” Nonlinear Analysis, vol. 12, no. 6, pp. 3046-3055, 2011. · Zbl 1231.37020 |

[11] | P. Liu and S. T. Liu, “Anti-synchronization between different chaotic complex systems,” Physica Scripta, vol. 83, no. 6, Article ID 065006, 2011. · Zbl 1225.37117 |

[12] | G. M. Mahmoud and E. E. Mahmoud, “Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems,” Nonlinear Dynamics, vol. 61, no. 1-2, pp. 141-152, 2010. · Zbl 1204.93096 |

[13] | G. M. Mahmoud and E. E. Mahmoud, “Lag synchronization of hyperchaotic complex nonlinear systems,” Nonlinear Dynamics, vol. 67, no. 2, pp. 1613-1622, 2012. · Zbl 1243.93044 |

[14] | E. E. Mahmoud, “Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters,” Journal of the Franklin Institute-Engineering and Applied Mathematics, vol. 349, no. 3, pp. 1247-1266, 2012. · Zbl 1273.93007 |

[15] | M. Hu, Y. Yang, Z. Xu, and L. Guo, “Hybrid projective synchronization in a chaotic complex nonlinear system,” Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 449-457, 2008. · Zbl 1151.93017 |

[16] | P. Liu, S. T. Liu, and X. Li, “Adaptive modified function projective synchronization of generaluncertain chaotic complex systems,” Physica Scripta, vol. 85, no. 3, Article ID 035005, 2012. · Zbl 1319.34106 |

[17] | Q. J. Zhang and J. A. Lu, “Passive control and synchronization of hyperchaotic Chen system,” Chinese Physics B, vol. 17, no. 2, pp. 492-497, 2008. |

[18] | D. Q. Wei, X. S. Luo, B. Zhang, and Y. H. Qin, “Controlling chaos in space-clamped FitzHugh-Nagumo neuron by adaptive passive method,” Nonlinear Analysis, vol. 11, no. 3, pp. 1752-1759, 2010. · Zbl 1213.93107 |

[19] | T. Sangpet and S. Kuntanapreeda, “Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains,” Journal of Sound and Vibration, vol. 329, no. 13, pp. 2490-2496, 2010. · Zbl 1193.34128 |

[20] | D. Q. Wei, B. Zhang, and X. S. Luo, “Adaptive synchronization of chaos in permanent magnet synchronous motors based on passivity theory,” Chinese Physics B, vol. 21, no. 3, Article ID 030504, 2012. |

[21] | G. M. Mahmoud, E. E. Mahmoud, and A. A. Arafa, “Passive control ofn-dimensional chaotic complex nonlinear systems,” Journal of Vibration and Control, vol. 21, no. 3, 2012. · Zbl 1358.34069 |

[22] | G. M. Mahmoud, E. E. Mahmoud, and M. E. Ahmed, “A hyperchaotic complex Chen system and its dynamics,” International Journal of Applied Mathematics & Statistics, vol. 12, no. D07, pp. 90-100, 2007. · Zbl 1136.37327 |

[23] | W. Yu, “Passive equivalence of chaos in Lorenz system,” IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications, vol. 46, no. 7, pp. 876-878, 1999. |

[24] | C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1228-1240, 1991. · Zbl 0758.93007 |

[25] | G. M. Mahmoud, T. Bountis, and E. E. Mahmoud, “Active control and global synchronization of the complex Chen and Lü systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 17, no. 12, pp. 4295-4308, 2007. · Zbl 1146.93372 |

[26] | G. M. Mahmoud, M. E. Ahmed, and E. E. Mahmoud, “Analysis of hyperchaotic complex Lorenz systems,” International Journal of Modern Physics C, vol. 19, no. 10, pp. 1477-1494, 2008. · Zbl 1170.37311 |

[27] | G. M. Mahmoud, E. E. Mahmoud, and M. E. Ahmed, “On the hyperchaotic complex Lü system,” Nonlinear Dynamics, vol. 58, no. 4, pp. 725-738, 2009. · Zbl 1183.70053 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.