zbMATH — the first resource for mathematics

Impulsive control and synchronization of a new unified hyperchaotic system with varying control gains and impulsive intervals. (English) Zbl 1267.34028
Summary: In this paper, we investigate the impulsive control and synchronization of a new unified hyperchaotic system. This new system unifies both the hyperchaotic Lorenz system and the hyperchaotic Chen system. Some conditions are given to guarantee the global asymptotic stability of the controlled and synchronized system. The control gains and impulsive intervals are both variable. Moreover, we estimate the upper bound of impulsive interval for stable control and synchronization. Simulations are included to show the effectiveness of the theoretical results.

34A37 Ordinary differential equations with impulses
93C15 Control/observation systems governed by ordinary differential equations
34D06 Synchronization of solutions to ordinary differential equations
Full Text: DOI
[1] Yang, T.: Impulsive control. IEEE Trans. Autom. Control 44, 1081–1083 (1999) · Zbl 0954.49022 · doi:10.1109/9.763234
[2] Yang, T.: Impulsive Control Theory. Springer, Berlin (2001) · Zbl 0996.93003
[3] Zhang, H.G., Wang, Z.L., Huang, W.: Chaos Control Theory. Northeastern University, Shenyang (2003)
[4] Yang, T., Chua, L.O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I 44, 976–988 (1997) · doi:10.1109/81.633887
[5] Zhang, H.G., Ma, T.D., Huang, G.B., Wang, Z.L.: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 831–844 (2010) · doi:10.1109/TSMCB.2009.2030506
[6] Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) · Zbl 0719.34002
[7] Zhang, H.G., Dong, M., Wang, Y.C., Sun, N.: Stochastic stability analysis of neutral-type impulsive neural networks with mixed time-varying delays and Markovian jumping. Neurocomputing 73, 2689–2695 (2010) · Zbl 05849223 · doi:10.1016/j.neucom.2010.04.016
[8] Stojanovski, T., Kocarev, L., Parlitz, U.: Driving and synchronizing by chaotic impulses. Phys. Rev. E 54, 2128–2131 (1996) · doi:10.1103/PhysRevE.54.2128
[9] Yang, T., Yang, L.B., Yang, C.M.: Impulsive control of Lorenz system. Physica D 110, 18–24 (1997) · Zbl 0925.93414 · doi:10.1016/S0167-2789(97)00116-4
[10] Yang, T., Yang, L.B., Yang, C.M.: Impulsive synchronization of Lorenz systems. Phys. Lett. A 226, 349–354 (1997) · Zbl 0773.35035 · doi:10.1016/S0375-9601(97)00004-2
[11] Sun, J.T., Zhang, Y.P., Wu, Q.D.: Less conservative conditions for asymptotic stability of impulsive control systems. IEEE Trans. Autom. Control 48, 829–831 (2003) · Zbl 1364.93691 · doi:10.1109/TAC.2003.811262
[12] Sun, J.T., Zhang, Y.P., Wu, Q.D.: Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A 298, 153–160 (2002) · Zbl 0995.37021 · doi:10.1016/S0375-9601(02)00466-8
[13] Sun, J.T., Zhang, Y.P.: Impulsive control of Rössler systems. Phys. Lett. A 306, 306–312 (2003) · Zbl 1006.37049 · doi:10.1016/S0375-9601(02)01499-8
[14] Li, Z.G., Wen, C.Y., Soh, Y.C.: Analysis and design of impulsive control systems. IEEE Trans. Autom. Control 46, 894–897 (2001) · Zbl 1001.93068 · doi:10.1109/9.928590
[15] Xie, W.X., Wen, C.Y., Li, Z.G.: Impulsive control for the stabilization and synchronization of Lorenz systems. Phys. Lett. A 275, 67–72 (2000) · Zbl 1115.93347 · doi:10.1016/S0375-9601(00)00584-3
[16] Chen, S.H., Yang, Q., Wang, C.P.: Impulsive control and synchronization of unified chaotic system. Chaos Solitons Fractals 20, 751–758 (2004) · Zbl 1050.93051 · doi:10.1016/j.chaos.2003.08.008
[17] Li, C.D., Liao, X.F., Zhang, X.Y.: Impulsive synchronization of chaotic systems. Chaos 15, 023104 (2005) · Zbl 1080.37034
[18] Itoh, M., Yang, T., Chua, L.O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int. J. Bifurc. Chaos 11, 551–560 (2001) · Zbl 1090.37520 · doi:10.1142/S0218127401002262
[19] Hu, M.F., Yang, Y.Q., Xu, Z.Y.: Impulsive control of projective synchronization in chaotic systems. Phys. Lett. A 372, 3228–3233 (2008) · Zbl 1220.34079 · doi:10.1016/j.physleta.2008.01.054
[20] Zhang, L.P., Jiang, H.B., Bi, Q.S.: Reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems. Nonlinear Dyn. 59, 529–534 (2010) · Zbl 1189.93085 · doi:10.1007/s11071-009-9559-z
[21] Li, Y., Liao, X.F., Li, C.D., Huang, T.W., Yang, D.G.: Impulsive synchronization and parameter mismatch of the three-variable autocatalator model. Phys. Lett. A 366, 52–60 (2007) · doi:10.1016/j.physleta.2006.12.073
[22] Wen, C.Y., Ji, Y., Li, Z.G.: Practical impulsive synchronization of chaotic systems with parametric uncertainty and mismatch. Phys. Lett. A 361, 108–114 (2007) · Zbl 1170.37312 · doi:10.1016/j.physleta.2006.09.021
[23] Itoh, M., Yang, T., Chua, L.O.: Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits. Int. J. Bifurc. Chaos 9, 1393–1424 (1999) · Zbl 0963.34029 · doi:10.1142/S0218127499000961
[24] Zhang, H.G., Fu, J., Ma, T.D., Tong, S.C.: An improved impulsive control approach for nonlinear systems with time-varying delays. Chin. Phys. B 18(3), 969–974 (2009) · doi:10.1088/1674-1056/18/3/021
[25] Zhang, H.G., Huang, W., Wang, Z.L.: Impulsive control for synchronization of a class chaotic systems. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 12, 153–161 (2005)
[26] Zhang, H.G., Ma, T.D., Yu, W., Fu, J.: A practical approach to robust impulsive lag synchronization between different chaotic systems. Chin. Phys. B 17, 3616–3622 (2008) · doi:10.1088/1674-1056/17/10/014
[27] Wang, F.Q., Liu, C.X.: Hyperchaos evolved from the Liu chaotic system. Chin. Phys. 15, 963–968 (2006) · doi:10.1088/1009-1963/15/5/016
[28] Liu, L., Liu, C.X., Zhang, Y.B.: Analysis of a novel four-dimensional hyperchaotic system. Chin. J. Phys. 46(4), 386–393 (2008)
[29] Mahmoud, G.M., Mahmoud, E.E.: On the hyperchaotic complex Lü system. Nonlinear Dyn. 58(4), 725–738 (2009) · Zbl 1183.70053 · doi:10.1007/s11071-009-9513-0
[30] Liu, L., Liu, C.X., Zhang, Y.B.: Theoretical analysis and circuit implementation of a novel complicated hyperchaotic system. Nonlinear Dyn. 66(4), 707–715 (2011) · Zbl 1245.34059 · doi:10.1007/s11071-011-9943-3
[31] Wang, F.Q., Liu, C.X.: A new criterion for chaos and hyperchaos synchronization using linear feedback control. Phys. Lett. A 360, 274–278 (2006) · Zbl 1236.93131 · doi:10.1016/j.physleta.2006.08.037
[32] Mahmoud, G.M., Mahmoud, E.E.: Lag synchronization of hyperchaotic complex nonlinear systems. Nonlinear Dyn. 67(2), 1613–1622 (2012) · Zbl 1243.93044 · doi:10.1007/s11071-011-0091-6
[33] Ma, C., Wang, X.Y.: Bridge between the hyperchaotic Lorenz system and the hyperchaotic Chen system. Int. J. Mod. Phys. B 25, 711–721 (2011) · Zbl 05913666 · doi:10.1142/S0217979211057967
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.