×

A numerical approximation based on the Bessel functions of first kind for solutions of Riccati type differential-difference equations. (English) Zbl 1268.65090

Summary: A collocation method based on the Bessel functions of first kind is given for the approximate solutions of the Riccati differential-difference equations under the mixed condition. The method is presented with error analysis. Numerical examples are included to demonstrate the validity and applicability of the method and the comparisons are made with existing results.

MSC:

65L03 Numerical methods for functional-differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Reid, W.T., Riccati differential equations, (1972), Academic Press New York · Zbl 0209.11601
[2] Dehghan, M.; Taleei, A., A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. phys. commun., 181, 43-51, (2010) · Zbl 1206.65207
[3] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. comput. simul., 71, 16-30, (2006) · Zbl 1089.65085
[4] Carinena, J.F.; Marmo, G.; Perelomov, A.M.; Ranada, M.F., Related operators and exact solutions of Schrödinger equations, Internat. J. modern phys. A, 13, 4913-4929, (1998) · Zbl 0927.34065
[5] Scott, M.R., Invariant imbedding and its applications to ordinary differential equations, (1973), Addison-Wesley
[6] Dehghan, M.; Shakeri, F., Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New astronomy, 13, 53-59, (2008)
[7] Dehghan, M.; Saadatmandi, A., Variational iteration method for solving the wave equation subject to an integral conservation condition, Chaos solitons fractals, 41, 1448-1453, (2009) · Zbl 1198.65202
[8] Geng, F.; Lin, Y.; Cui, M., A piecewise variational iteration method for Riccati differential equations, Comput. math. appl., 58, 2518-2522, (2009) · Zbl 1189.65164
[9] Ghorbani, A.; Momani, S., An effective variational iteration algorithm for solving Riccati differential equations, Appl. math. lett., 23, 922-927, (2010) · Zbl 1192.65095
[10] Tatari, M.; Dehghan, M., On the convergence of he’s variational iteration method, J. comput. appl. math., 207, 121-128, (2007) · Zbl 1120.65112
[11] Tatari, M.; Dehghan, M., Improvement of he’s variational iteration method for solving systems of differential equations, Comput. math. appl., 58, 2160-2166, (2009) · Zbl 1189.65178
[12] Abbasbandy, S., A new application of he’s variational iteration method for quadratic Riccati differential equation by using adomian’s polynomials, J. comput. appl. math., 207, 59-63, (2007) · Zbl 1120.65083
[13] Lakestani, M., Mehdi dehghan, numerical solution of Riccati equation using the cubic \(B\)-spline scaling functions and Chebyshev cardinal functions, Comput. phys. commun., 181, 957-966, (2010) · Zbl 1205.65206
[14] Abbasbandy, S., Homotopy perturbation method for quadratic Riccati differential equation and comparison with adomian’s decomposition method, Appl. math. comput., 172, 485-490, (2006) · Zbl 1088.65063
[15] Geng, F., A modified variational iteration method for solving Riccati differential equations, Comput. math. appl, 60, 1868-1872, (2010) · Zbl 1205.65229
[16] Gulsu, M.; Sezer, M., On the solution of the Riccati equation by the Taylor matrix method, Appl. math. comput., 176, 414-421, (2006) · Zbl 1093.65072
[17] Abbasbandy, S., Iterated he’s homotopy perturbation method for quadratic Riccati differential equation, Appl. math. comput., 175, 581-589, (2006) · Zbl 1089.65072
[18] Bulut, H.; Evans, D.J., On the solution of the Riccati equation by the decomposition method, Int. J. comput. math., 79, 103-109, (2002) · Zbl 0995.65073
[19] El-Tawil, M.A.; Bahnasawi, A.A.; Abdel-Naby, A., Solving Riccati differential equation using adomian’s decomposition method, Appl. math. comput., 157, 503-514, (2004) · Zbl 1054.65071
[20] Dehghan, M.; Shakourifar, M.; Hamidi, A., The solution of linear and nonlinear systems of Volterra functional equations using adomian – pade technique, Chaos solitons., 39, 2509-2521, (2009) · Zbl 1197.65223
[21] Dehghan, M.; Shakeri, F., The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics, Phys. scripta, 78, 065004, (2008), (11 pp) · Zbl 1159.78319
[22] Aminikhah, H.; Hemmatnezhad, M., An efficient method for quadratic Riccati differential equation, Commun. nonlinear sci. numer. simul., 15, 835-839, (2010) · Zbl 1221.65193
[23] Dehghan, M.; Salehi, R., The use of variational iteration method and Adomian decomposition method to solve the eikonal equation and its application in the reconstruction problem, Int. J. numer. meth. biomed. engng., 27, 524-540, (2011) · Zbl 1218.65112
[24] Yalçınbaş, S.; Sezer, M., The approximate solution of high-order linear volterra – fredholm integro – differential equations in terms of Taylor polynomials, Appl. math. comput., 112, 291-308, (2000) · Zbl 1023.65147
[25] Sezer, M.; Gulsu, M., Polynomial solution of the most general linear Fredholm integro – differential-difference equation by means of Taylor matrix method, Int. J. complex variables, 50, 5, 367-382, (2005) · Zbl 1077.45006
[26] Yalçınbaş, S.; Sezer, M; Sorkun, H.H, Legendre polynomial solutions of high-order linear Fredholm integro – differential equations, Appl. math. comput., 210, 334-349, (2009) · Zbl 1162.65420
[27] Akyüz-Daşcioǧlu, A.; Sezer, M., Chebyshev polynomial solutions of systems of higher-order linear fredholm – volterra integro – differential equations, J. franklin inst., 342, 688-701, (2005) · Zbl 1086.65121
[28] Akyüz-Daşcıoğlu, A.; Sezer, M., Chebyshev polynomial solutions of systems of high-order linear differential equations with variable coefficients, Appl. math. comput., 144, 237-247, (2003) · Zbl 1024.65059
[29] Yüzbaşı, Ş.; Şahin, N.; Sezer, M., Bessel matrix method for solving high-order linear Fredholm integro – differential equations, J. adv. res. appl. math., 3, 2, 23-47, (2011)
[30] Yüzbaşı, Ş.; Şahin, N.; Sezer, M., Numerical solutions of systems of linear Fredholm integro – differential equations with Bessel polynomial bases, Comput. math. appl., 61, 10, 3079-3096, (2011) · Zbl 1222.65154
[31] Ş. Yüzbaşı, N. Şahin, M. Sezer, A Bessel collocation method for numerical solution of generalized pantograph equations, Numer. Methods for Partial Diff. Eq., (2011) in press (doi:10.1002/num.20660).
[32] Yüzbaşı, Ş.; Şahin, N.; Sezer, M., A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients, J. adv. res. diff. equ., 3, 1, 81-101, (2011)
[33] Işık, O.R.; Sezer, M.; Güney, Z., Bernstein series solution of a class of linear integro – differential equations with weakly singular kernel, Appl. math. comput., 217, 16, 7009-7020, (2011) · Zbl 1213.65153
[34] Yüzbaşı, Ş., A numerical approach for solving a class of the nonlinear lane – emden type equations arising in astrophysics, Math. meth. appl. sci., 34, 2218-2230, (2011) · Zbl 1231.65116
[35] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical mathematics, (2007), Springer N.Y · Zbl 0913.65002
[36] Rivlin, T.J., An introduction to the approximation of functions, (2003), Dover Publications N.Y · Zbl 0189.06601
[37] Phillips, George M., Interpolation and approximation by polynomials, (2003), Springer N.Y · Zbl 1023.41002
[38] Adomian, G., Solving frontier problems of fhysics: decomposition method, (1994), Kluwer Academic Publishers Dordrecth
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.