×

zbMATH — the first resource for mathematics

Rational period functions and cycle integrals. (English) Zbl 1269.11040
Summary: In this paper we give some applications of weakly holomorphic forms and their cycle integrals to rational period functions for the modular group. In particular, we give a simple construction of the associated modular integrals that works for all weights.

MSC:
11F11 Holomorphic modular forms of integral weight
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asai, T., Kaneko, M., Ninomiya, H.: Zeros of certain modular functions and an application. Comment. Math. Univ. St. Paul. 46(1), 93–101 (1997) · Zbl 0907.11013
[2] Choie, Yj., Zagier, D.: Rational period functions for PSL(2,Z). A Tribute to Emil Grosswald: Number Theory and Related Analysis. Contemp. Math., vol. 143, pp. 89–108. Amer. Math. Soc., Providence (1993) · Zbl 0790.11044
[3] Duke, W., Imamoglu, Ö., Tóth, A.: Cycle integrals of the j-function and mock modular forms. Ann. Math. (to appear)
[4] Duke, W., Jenkins, P.: On the zeros and coefficients of certain weakly holomorphic modular forms. Pure Appl. Math. Q. 4(4), 1327–1340 (2008) · Zbl 1200.11027
[5] Eichler, M., Eine Verallgemeinerung der Abelschen Integrale. Math. Z. 67, 267–298 (1957) · Zbl 0080.06003 · doi:10.1007/BF01258863
[6] Eichler, M.: Grenzkreisgruppen und kettenbruchartige Algorithmen. Acta Arith. 11, 169–180 (1965) · Zbl 0148.32503
[7] Knopp, M.I.: Some new results on the Eichler cohomology of automorphic forms. Bull. Am. Math. Soc. 80, 607–632 (1974) · Zbl 0292.10022 · doi:10.1090/S0002-9904-1974-13520-2
[8] Knopp, M.I.: Rational period functions of the modular group. With an appendix by Georges Grinstein. Duke Math. J. 45(1), 47–62 (1978) · Zbl 0374.10014 · doi:10.1215/S0012-7094-78-04504-0
[9] Knopp, M.I.: Rational period functions of the modular group. II. Glasgow Math. J. 22(2), 185–197 (1981) · Zbl 0459.10017 · doi:10.1017/S0017089500004663
[10] Knopp, M.I.: Recent developments in the theory of rational period functions. In: Number Theory (New York, 1985/1988). Lecture Notes in Math., vol. 1383, pp. 111–122. Springer, Berlin (1989)
[11] Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms (Durham, 1983). Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pp. 197–249. Horwood, Chichester (1984)
[12] Lewis, J., Zagier, D.: Period functions for Maass wave forms. I. Ann. of Math. (2) 153(1), 191–258 (2001) · Zbl 1061.11021 · doi:10.2307/2661374
[13] Parson, L.A.: Modular integrals and indefinite binary quadratic forms. In: A Tribute to Emil Grosswald: Number Theory and Related Analysis. Contemp. Math., vol. 143, pp. 513–523. Amer. Math. Soc., Providence (1993) · Zbl 0795.11022
[14] Parson, L.A.: Rational period functions and indefinite binary quadratic forms. III. In: A Tribute to Emil Grosswald: Number Theory and Related Analysis. Contemp. Math., vol. 143, pp. 109–116. Amer. Math. Soc., Providence (1993) · Zbl 0790.11045
[15] Poincaré, H.: Sur les invariants arithmétiques. J. Math. 129, 89–150 (1905) in OEuvres V, 203–266 · JFM 36.0144.07
[16] Siegel, C.L.: Bernoullische Polynome und quadratische Zahlkörper. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 2, 7–38 (1968) · Zbl 0273.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.