zbMATH — the first resource for mathematics

W-methods in optimal control. (English) Zbl 1269.65063
Summary: This paper addresses the consistency and stability of W-methods up to order three for nonlinear ordinary differential equation-constrained control problems with possible restrictions on the control. The analysis is based on the transformed adjoint system and the control uniqueness property. These methods can also be applied to large-scale partial differential equation-constrained optimization, since they offer an efficient way to compute gradients of the discrete objective function.

65K10 Numerical optimization and variational techniques
49J15 Existence theories for optimal control problems involving ordinary differential equations
49M25 Discrete approximations in optimal control
Full Text: DOI
[1] Bonnans, JF; Laurent-Varin, J, Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, Numer. Math., 103, 1-10, (2006) · Zbl 1112.65063
[2] Büttner, M; Schmitt, BA; Weiner, R, W-methods with automatic partitioning by Krylov techniques for large stiff systems, SIAM J. Numer. Anal., 32, 260-284, (1995) · Zbl 0820.65043
[3] Dhamo, V; Tröltzsch, F, Some aspects of reachability for parabolic boundary control problems with control constraints, Comput. Optim. Appl., 50, 75-110, (2011) · Zbl 1245.93016
[4] Hager, WW, Runge-Kutta methods in optimal control and the transformed adjoint system, Numer. Math., 87, 247-282, (2000) · Zbl 0991.49020
[5] Hager, WW; Zhang, H, A new active set algorithm for box constrained optimization, SIAM J. Optim., 17, 526-557, (2006) · Zbl 1165.90570
[6] Hager, W.W., Zhang, H.: Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32, 113-137 (2006) · Zbl 1346.90816
[7] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Equations, 2nd revised edn. Springer, Berlin (1996) · Zbl 1192.65097
[8] Jacobson, D.H., Mayne, D.Q.: Differential Dynamic Programming. American Elsevier Publishing, New York (1970) · Zbl 0223.49022
[9] Kammann, E.: Modellreduktion und Fehlerabschätzung bei parabolischen Optimalsteuerungsproblemen. Diploma thesis, Department of Mathematics, Technische Universität Berlin (2010) · Zbl 0889.65083
[10] Kaps, P; Rentrop, P, Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations, Numer. Math., 33, 55-68, (1979) · Zbl 0436.65047
[11] Lang, J.: Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm and Applications. Lecture Notes in Computational Science and Engineering, vol. 16. Springer, Berlin (2000) · Zbl 0964.90062
[12] Murua, A, On order conditions for partitioned symplectic methods, SIAM J. Numer. Anal., 34, 2204-2211, (1997) · Zbl 0889.65083
[13] Pulova, N.V.: Runge-Kutta Schemes in Control Constrained Optimal Control. Lecture Notes in Computer Science, LNCS, vol. 4818, pp. 358-365 (2008) · Zbl 1229.65123
[14] Rosenbrock, HH, Some general implicit processes for the numerical solution of differential equations, Comput. J., 5, 329-331, (1963) · Zbl 0112.07805
[15] Sandu, A.: On the Properties of Runge-Kutta Discrete Adjoints. Lecture Notes in Computer Science, LNCS, vol. 3394, pp. 550-557 (2006) · Zbl 1157.65421
[16] Sandu, A.: On consistency properties of discrete adjoint linear multistep methods. Report TR-07-40, Computer Science Department, Virginia Polytechnical Institute and State University (2007) · Zbl 0900.65238
[17] Schwartz, A; Polak, E, Consistent approximations for optimal control problems based on Runge-Kutta integration, SIAM J. Control Optim., 34, 1235-1269, (1996) · Zbl 0861.49002
[18] Spellucci, P.: Donlp2-intv-dyn users guide. Version November 18, 2009 · Zbl 0820.65043
[19] Spellucci, P, A new technique for inconsistent QP problems in the SQP method, Math. Methods Oper. Res., 47, 355-400, (1998) · Zbl 0964.90062
[20] Spellucci, P, An SQP method for general nonlinear programs using only equality constrained subproblems, Math. Program., 82, 413-448, (1998) · Zbl 0930.90082
[21] Steihaug, T; Wolfbrandt, A, An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff ordinary differential equations, Math. Comput., 33, 521-534, (1979) · Zbl 0451.65055
[22] Strehmel, K., Weiner, R.: Linear-implizite Runge-Kutta-Methoden und ihre Anwendungen. Teubner-Texte zur Mathematik, Bd. 127, Teubner (1992) · Zbl 0759.65047
[23] Verwer, JG; Spee, EJ; Blom, JG; Hundsdorfer, WH, A second order rosenbrock method applied to photochemical dispersion problems, SIAM J. Sci. Comput., 20, 1456-1480, (1999) · Zbl 0928.65116
[24] Walther, A, Automatic differentiation of explicit Runge-Kutta methods for optimal control, Comput. Optim. Appl., 36, 83-108, (2007) · Zbl 1278.49037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.