×

zbMATH — the first resource for mathematics

Steady MHD flow of a third grade fluid in a rotating frame and porous space. (English) Zbl 1269.76004
Summary: This paper looks at numerical solutions of steady state rotating and magnetohydrodynamic (MHD) flow of a third grade fluid past a rigid plate with slip. The space occupying the fluid is porous. The flow modeling is based upon the modified Darcy’s law. The resulting non-linear problem is solved using MATLAB\(^{\circledR}\). The influence of pertinent flow parameters on the velocity profiles is illustrated and discussed.

MSC:
76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hayat, T.; Hutter, K., Rotating flow of a second-order fluid on a porous plate, Internat. J. non-linear. mech., 39, 767-777, (2004) · Zbl 1348.76149
[2] Hayat, T.; Nadeem, S.; Asghar, S.; Siddiqui, A.M., Fluctuating flow of a third order fluid on a porous plate in a rotating medium, Internat. J. non-linear. mech., 36, 901-916, (2001) · Zbl 1345.76099
[3] Hayat, T.; Hutter, K.; Asghar, S.; Siddiqui, A.M., MHD flows of an Oldroyd-B fluid, Math. comput. modeling, 36, 987-995, (2002) · Zbl 1026.76060
[4] Hayat, T.; Hameed, M.I.; Asghar, S.; Siddiqui, A.M., Some steady MHD flows of the second order fluid, Meccanica, 39, 345-355, (2004) · Zbl 1068.76571
[5] Hayat, T.; Wang, Y.; Hutter, K., Hall effects on the unsteady hydromagnetic oscillatory flow of a second grade fluid, Internat. J. non-linear. mech., 39, 1027-1037, (2004) · Zbl 1348.76187
[6] Hayat, T.; Hutter, K.; Nadeem, S.; Asghar, S., Unsteady hydromagnetic rotating flow of a conducting second grade fluid, Z. angew. math. phys., 55, 626-641, (2004) · Zbl 1079.76006
[7] Puri, P., Rotating flow of an elastico-viscous fluid on an oscillating plate, Z. angew. math. mech., 54, 743-745, (1974) · Zbl 0292.76063
[8] Puri, P.; Kulshrestha, P.K., Rotating flow of non-Newtonian fluids, Appl. anal., 4, 131-140, (1974) · Zbl 0303.76057
[9] Wang, Y.; Hayat, T., Hydromagnetic rotating flow of a fourth order fluid past a porous plate, Math. meth. appl. sci., 27, 477-496, (2004) · Zbl 1128.76378
[10] Asghar, S.; Parveen, S.; Hanif, S.; Siddiqui, A.M.; Hayat, T., Hall effects on the unsteady hydromagnetic flows of an Oldroyd-B fluid, Int. J. eng. sci., 41, 609-619, (2003) · Zbl 1211.76138
[11] Hayat, T.; Abelman, S., A numerical study of the influence of slip boundary condition on rotating flow, Int. J. comput. fluid dyn., 21, 21-27, (2007) · Zbl 1184.76901
[12] Rajagopal, K.R., On the boundary conditions for fluids of the differential type, (), 273-278 · Zbl 0846.35107
[13] Rajagopal, K.R.; Gupta, A.S., An exact solution for the flow of a non-Newtonian fluid past an infinite porous plate, Meccanica, 19, 158-160, (1984) · Zbl 0552.76008
[14] Rajagopal, K.R.; Szeri, A.Z.; Troy, W., An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate, Internat. J. non-linear. mech., 21, 279-289, (1986) · Zbl 0599.76013
[15] Rajagopal, K.R., Boundedness and uniqueness of fluids of the differential type, Acta cienc. indica, 8, 28-38, (1982) · Zbl 0555.76011
[16] Rajagopal, K.R.; Kaloni, P.N., Some remarks on boundary conditions for fluids of differential type, (), 935-942
[17] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of the steady flow of a fourth grade fluid, Phys. lett. A, 355, 18-26, (2006)
[18] Vieru, D.; Fetecau, C.; Fetecau, C., Flow of a generalised Oldroyd-B fluid due to a constantly accelerating plate, Appl. math. comput., 201, 834-842, (2008) · Zbl 1143.76011
[19] Hayat, T.; Fetecau, C.; Sajid, M., Analytic solution for MHD transient rotating flow of a second grade fluid in a porous space, Nonlin. anal., RWA, 9, 1619-1627, (2008) · Zbl 1154.76391
[20] Hayat, T.; Fetecau, C.; Sajid, M., On MHD transient flow of a Maxwell fluid in a porous medium and rotating frame, Phys. lett. A, 372, 1639-1644, (2008) · Zbl 1217.76086
[21] Fetecau, C.; Vieru, D.; Fetecau, C., A note on the second problem of Stokes for Newtonian fluids, Internat. J. non-linear. mech., 43, 451-457, (2008) · Zbl 1203.76011
[22] Fosdick, R.L.; Rajagopal, K.R., Thermodynamics and stability of fluids of third grade, Proc. roy. soc. lond. A, 339, 351-377, (1980) · Zbl 0441.76002
[23] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, () · Zbl 0779.73004
[24] Rivlin, R.S.; Ericksen, J.L., Stress-deformation relations for isotropic materials, J. rat. mech. anal., 4, 323-325, (1955) · Zbl 0064.42004
[25] Tan, W.C.; Masuoka, T., Stokes’ first problem for an Oldroyd-B fluid in a porous half-space, Phys. fluids, 17, 023101-023107, (2005) · Zbl 1187.76517
[26] M.G. Alishayer, Proceedings of Moscow Pedagogy Institute, Hydromechanics, 3 1974, 166-174 (in Russian)
[27] Tan, W.C.; Masuoka, T., Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary, Internat. J. non-linear. mech., 40, 515-522, (2005) · Zbl 1349.76830
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.