×

zbMATH — the first resource for mathematics

Hidden attractors in dynamical systems. from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. (English) Zbl 1270.34003

MSC:
34-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models
65Lxx Numerical methods for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D10 Perturbations of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aizerman M. A., Uspekhi Mat. Nauk 4 pp 187– (1949)
[2] Aizerman M. A., Avtomatika i Telemekhanika 14 pp 597– (1953)
[3] Albarakati W. A., Electron. J. Diff. Eq. 2000 pp 1– (2000)
[4] Alli-Oke R., Preprints of the 7th IFAC Symp. Robust Control Design pp 27– (2012)
[5] DOI: 10.1016/S0165-0114(03)00162-3 · Zbl 1053.93513 · doi:10.1016/S0165-0114(03)00162-3
[6] DOI: 10.5565/PUBLMAT_41197_02 · Zbl 0880.34031 · doi:10.5565/PUBLMAT_41197_02
[7] DOI: 10.1142/S0218127406016720 · Zbl 1124.34014 · doi:10.1142/S0218127406016720
[8] DOI: 10.1142/S021812740802032X · Zbl 1206.34051 · doi:10.1142/S021812740802032X
[9] Bamon R., Ann. Acad. Bris. Cienc. pp 111– (1985)
[10] DOI: 10.1007/s11071-011-0238-5 · doi:10.1007/s11071-011-0238-5
[11] Barabanov N. E., Uspekhi Mat. Nauk 37 pp 163– (1982)
[12] DOI: 10.1007/BF00969640 · Zbl 0713.93044 · doi:10.1007/BF00969640
[13] Bautin N. N., Doklady Akademii Nauk SSSR 24 pp 668– (1939)
[14] Bautin N. N., Mat. Sb. (N.S.) 30 pp 181– (1952)
[15] Bellescize H., L’onde Électrique 11 pp 230– (1932)
[16] DOI: 10.1137/0309041 · Zbl 0213.15302 · doi:10.1137/0309041
[17] Bernat J., Dyn. Contin. Discr. Impul. Syst. 2 pp 337– (1996)
[18] DOI: 10.1016/j.jde.2008.07.032 · Zbl 1160.34026 · doi:10.1016/j.jde.2008.07.032
[19] DOI: 10.1134/S106423071104006X · Zbl 1266.93072 · doi:10.1134/S106423071104006X
[20] Bulgakov B. V., Prikl. Mat. Mekh. 7 pp 97– (1943)
[21] DOI: 10.1007/s00029-003-0317-7 · Zbl 1071.17011 · doi:10.1007/s00029-003-0317-7
[22] DOI: 10.1142/S0218127499001024 · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[23] DOI: 10.1007/s10114-005-0614-5 · Zbl 1117.46005 · doi:10.1007/s10114-005-0614-5
[24] DOI: 10.1016/j.ijnonlinmec.2011.12.006 · doi:10.1016/j.ijnonlinmec.2011.12.006
[25] Cherkas L. A., Diff. Uravn. 6 pp 891– (1970)
[26] Cherkas L. A., Diff. Uravn. 22 pp 2015– (1986)
[27] DOI: 10.1109/31.55064 · Zbl 0706.94026 · doi:10.1109/31.55064
[28] DOI: 10.1006/aima.1997.1673 · Zbl 0896.34042 · doi:10.1006/aima.1997.1673
[29] DOI: 10.1016/j.jsv.2003.09.017 · Zbl 1236.74103 · doi:10.1016/j.jsv.2003.09.017
[30] Coppel W. A., Expositions Dynamical System (N.S.) pp 61– (1989)
[31] DOI: 10.1016/0022-0396(91)90054-D · Zbl 0733.58037 · doi:10.1016/0022-0396(91)90054-D
[32] DOI: 10.1016/j.automatica.2008.09.008 · Zbl 1158.93400 · doi:10.1016/j.automatica.2008.09.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.