×

zbMATH — the first resource for mathematics

Constructing the extended Haagerup planar algebra. (English) Zbl 1270.46058
A subfactor is an inclusion \(N \subset M\) of von Neumann algebras with trivial centers. There are three invariants associated to a subfactor. The weakest is the index \([M:N]\), which measures the “relative size” of \(N\) in \(M\). The second is the pair of principal and dual principal graphs, which describe the fusion rules of “basic” bimodules over \(N\) and \(M\). The strongest is the standard invariant, which encodes all information about these bimodules. This article uses the planar algebra formalism of Jones for the standard invariant, other axiomatizations are the paragroups of Ocneanu and the \(\lambda\)-lattices of Popa.
A fundamental result of V. F. R. Jones [Invent. Math. 72, 1–25 (1983; Zbl 0508.46040)] is that the index lies in the set \(\{4\cos^2(\frac{\pi}{n}):n \geq 3\} \cup [4,\infty)\). For “small” index values above \(4\), the possible pairs of principal and dual principal graphs remain quantized. In fact, U. Haagerup [Subfactors. Proceedings of the Taniguchi symposium on operator algebras, Kyuzeso, Japan, July 6–10, 1993. Singapore: World Scientific. 1–38 (1994; Zbl 0933.46058)] produced a list of all potential pairs of principal and dual principal graphs in the index range \((4,3 + \sqrt{3})\). Asaeda and Haagerup constructed subfactors with principal and dual principal graphs equal to two of these candidate pairs. Other candidates were ruled out by Bisch, Asaeda and Yasuda. The only case which remained was the extended Haagerup principal graph.
The main result of this article is the construction of a planar algebra with extended Haagerup principal graph. This completes the classification of irreducible subfactors with index below \(3 + \sqrt{3}\) which was initiated by Haagerup in the early 1990’s, and is a breakthrough result in the area. This is also a key component of the recent classification of subfactors of index up to \(5\) due to the authors and others in a series of articles (see, e.g., [S. Morrison and N. Snyder, Commun. Math. Phys. 312, No. 1, 1–35 (2012; Zbl 1246.46055)]). The method of proof uses skein theoretic techniques to find the subfactor planar algebra inside the graph planar algebra of the extended Haagerup principal graph. This idea was outlined by V. F. R. Jones [Ser. Knots Everything 24, 94–117 (2000; Zbl 1021.46047)], and was applied to the Haagerup principal graph by E. Peters [Int. J. Math. 21, No. 8, 987–1045 (2010; Zbl 1203.46039)]. A key technique developed in the article is the “jellyfish” algorithm for evaluating closed diagrams given certain skein relations, which is likely to have further applications in quantum topology.

MSC:
46L37 Subfactors and their classification
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Asaeda, M., Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math., 18 (2007), 191–202. · Zbl 1117.46041 · doi:10.1142/S0129167X07003996
[2] Asaeda, M. & Haagerup, U., Exotic subfactors of finite depth with Jones indices $$ \(\backslash\)left( {5 + \(\backslash\)sqrt {{13}} } \(\backslash\)right)/2 $$ and $$ \(\backslash\)left( {5 + \(\backslash\)sqrt {{17}} } \(\backslash\)right)/2 $$ . Comm. Math. Phys., 202 (1999), 1–63. · Zbl 1014.46042 · doi:10.1007/s002200050574
[3] Asaeda, M. & Yasuda, S., On Haagerup’s list of potential principal graphs of subfactors. Comm. Math. Phys., 286 (2009), 1141–1157. · Zbl 1180.46051 · doi:10.1007/s00220-008-0588-0
[4] Bigelow, S., Skein theory for the ADE planar algebras. J. Pure Appl. Algebra, 214 (2010), 658–666. · Zbl 1192.46059 · doi:10.1016/j.jpaa.2009.07.010
[5] Bion-Nadal, J., An example of a subfactor of the hyperfinite II1 factor whose principal graph invariant is the Coxeter graph E 6, in Current Topics in Operator Algebras (Nara, 1990), pp. 104–113. World Scientific, River Edge, NJ, 1991. · Zbl 0816.46063
[6] Bisch, D., An example of an irreducible subfactor of the hyperfinite II1 factor with rational, noninteger index. J. Reine Angew. Math., 455 (1994), 21–34. · Zbl 0802.46073
[7] – Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, in Operator Algebras and their Applications (Waterloo, ON, 1994/1995), Fields Inst. Commun., 13, pp. 13–63. Amer. Math. Soc., Providence, RI, 1997.
[8] – Principal graphs of subfactors with small Jones index. Math. Ann., 311 (1998), 223–231. · Zbl 0927.46040
[9] – Subfactors and planar algebras, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 775–785. Higher Ed. Press, Beijing, 2002. · Zbl 1014.60073
[10] Bisch, D., Nicoara, R. & Popa, S. T., Continuous families of hyperfinite subfactors with the same standard invariant. Internat. J. Math., 18 (2007), 255–267. · Zbl 1120.46047 · doi:10.1142/S0129167X07004011
[11] de Boer, J. & Goeree, J., Markov traces and II1 factors in conformal field theory. Comm. Math. Phys., 139 (1991), 267–304. · Zbl 0760.57002 · doi:10.1007/BF02352496
[12] Connes, A., Noncommutative Geometry. Academic Press, San Diego, CA, 1994.
[13] Coste, A. & Gannon, T., Remarks on Galois symmetry in rational conformal field theories. Phys. Lett. B, 323 (1994), 316–321. · doi:10.1016/0370-2693(94)91226-2
[14] Doplicher, S. & Roberts, J. E., A new duality theory for compact groups. Invent. Math., 98 (1989), 157–218. · Zbl 0691.22002 · doi:10.1007/BF01388849
[15] Etingof, P., Nikshych, D. & Ostrik, V., On fusion categories. Ann. of Math., 162 (2005), 581–642. · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[16] Frenkel, I. B. & Khovanov, M. G., Canonical bases in tensor products and graphical calculus for Uq (sl). Duke Math. J., 87 (1997), 409–480. · Zbl 0883.17013 · doi:10.1215/S0012-7094-97-08715-9
[17] Guionnet, A., Jones, V. F. R. & Shlyakhtenko, D., Random matrices, free probability, planar algebras and subfactors, in Quanta of Maths, Clay Math. Proc., 11, pp. 201–239. Amer. Math. Soc., Providence, RI, 2010. · Zbl 1219.46057
[18] Haagerup, U., Principal graphs of subfactors in the index range $$ 4 < \(\backslash\)left[ {M:N} \(\backslash\)right] < 3 + \(\backslash\)sqrt {2} $$ , in Subfactors (Kyuzeso, 1993), pp. 1–38. World Scientific, River Edge, NJ, 1994. · Zbl 0933.46058
[19] Han, R., A Construction of the ”2221” Planar Algebra. Ph.D. Thesis, University of California, Riverside, CA, 2010.
[20] Hong, S.-M., Rowell, E. & Wang, Z., On exotic modular tensor categories. Commun. Contemp. Math., 10 (2008), 1049–1074. · Zbl 1160.18302 · doi:10.1142/S0219199708003162
[21] Ikeda, K., Numerical evidence for flatness of Haagerup’s connections. J. Math. Sci. Univ. Tokyo, 5 (1998), 257–272. · Zbl 0910.46044
[22] Izumi, M., Application of fusion rules to classification of subfactors. Publ. Res. Inst. Math. Sci., 27 (1991), 953–994. · Zbl 0765.46048 · doi:10.2977/prims/1195169007
[23] – On flatness of the Coxeter graph E 8. Pacific J. Math., 166 (1994), 305–327. · Zbl 0822.46073
[24] – The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys., 13 (2001), 603–674. · Zbl 1033.46506
[25] Izumi, M., Jones, V. F. R., Morrison, S. & Snyder, N., Subfactors of index less than 5, part 3: quadruple points. To appear in Comm. Math. Phys. · Zbl 1272.46051
[26] Jones, V. F. R., Index for subfactors. Invent. Math., 72 (1983), 1–25. · Zbl 0508.46040 · doi:10.1007/BF01389127
[27] – Braid groups, Hecke algebras and type II1 factors, in Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, pp. 242–273. Longman, Harlow, 1986.
[28] – The planar algebra of a bipartite graph, in Knots in Hellas ’98 (Delphi), Ser. Knots Everything, 24, pp. 94–117. World Scientific, River Edge, NJ, 2000.
[29] – The annular structure of subfactors, in Essays on Geometry and Related Topics, Vol. 2, Monogr. Enseign. Math., 38, pp. 401–463. Enseignement Math., Geneva, 2001. · Zbl 1019.46036
[30] – Two subfactors and the algebraic decomposition of bimodules over II1 factors. Acta Math. Vietnam., 33 (2008), 209–218. · Zbl 1182.46049
[31] – Planar algebras, I. Preprint, 1999. arXiv:math/9909027 [math.QA ].
[32] – Quadratic tangles in planar algebras. To appear in Duke Math. J.
[33] Jones, V. F. R. & Penneys, D., The embedding theorem for finite depth subfactor planar algebras. Quantum Topol., 2 (2011), 301–337. · Zbl 1230.46055 · doi:10.4171/QT/23
[34] Jones, V. F. R., Shlyakhtenko, D. & Walker, K., An orthogonal approach to the subfactor of a planar algebra. Pacific J. Math., 246 (2010), 187–197. · Zbl 1195.46067 · doi:10.2140/pjm.2010.246.187
[35] Joyal, A. & Street, R., The geometry of tensor calculus. I. Adv. Math., 88 (1991), 55–112. · Zbl 0738.18005 · doi:10.1016/0001-8708(91)90003-P
[36] – An introduction to Tannaka duality and quantum groups, in Category Theory (Como, 1990), Lecture Notes in Math., 1488, pp. 413–492. Springer, Berlin, 1991.
[37] Kauffman, L. H., State models and the Jones polynomial. Topology, 26 (1987), 395–407. · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[38] Kawahigashi, Y., On flatness of Ocneanu’s connections on the Dynkin diagrams and classification of subfactors. J. Funct. Anal., 127 (1995), 63–107. · Zbl 0829.46048 · doi:10.1006/jfan.1995.1003
[39] Kodiyalam, V. & Sunder, V. S., From subfactor planar algebras to subfactors. Internat. J. Math., 20 (2009), 1207–1231. · Zbl 1185.46043 · doi:10.1142/S0129167X0900573X
[40] Kuperberg, G., Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180 (1996), 109–151. · Zbl 0870.17005 · doi:10.1007/BF02101184
[41] Morrison, S., A formula for the Jones-Wenzl projections. Unpublished manuscript. Available at http://tqft.net/math/JonesWenzlProjections.pdf . · Zbl 1433.17019
[42] Morrison, S., Penneys, D., Peters, E. & Snyder, N., Subfactors of index less than 5, part 2: triple points. Internat. J. Math., 23 (2012), 1250016, 33 pp. · Zbl 1246.46054
[43] Morrison, S., Peters, E. & Snyder, N., Skein theory for the D2n planar algebras. J. Pure Appl. Algebra, 214 (2010), 117–139. · Zbl 1191.46051 · doi:10.1016/j.jpaa.2009.04.010
[44] Morrison, S. & Snyder, N., Non-cyclotomic fusion categories. To appear in Trans. Amer. Math. Soc. · Zbl 1284.18016
[45] – Subfactors of index less than 5, part 1: the principal graph odometer. To appear in Comm. Math. Phys. · Zbl 1246.46055
[46] Morrison, S. & Walker, K., The graph planar algebra embedding theorem. Unpublished manuscript. Available at http://tqft.net/papers/gpa.pdf .
[47] Ocneanu, A., Quantized groups, string algebras and Galois theory for algebras, in Operator Algebras and Applications, Vol. 2, London Math. Soc. Lecture Note Ser., 136, pp. 119–172. Cambridge Univ. Press, Cambridge, 1988. · Zbl 0696.46048
[48] – Chirality for operator algebras, in Subfactors (Kyuzeso, 1993), pp. 39–63. World Scientific, River Edge, NJ, 1994.
[49] – The classification of subgroups of quantum SU(N ), in Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., 294, pp. 133–159. Amer. Math. Soc., Providence, RI, 2002.
[50] Penneys, D. & Tener, J. E., Subfactors of index less than 5, part 4: vines. Internat. J. Math., 23 (2012), 1250017, 18 pp. · Zbl 1246.46056
[51] Penrose, R., Applications of negative dimensional tensors, in Combinatorial Mathematics and its Applications (Oxford, 1969), pp. 221–244. Academic Press, London, 1971.
[52] Peters, E., A planar algebra construction of the Haagerup subfactor. Internat. J. Math., 21 (2010), 987–1045. · Zbl 1203.46039 · doi:10.1142/S0129167X10006380
[53] Popa, S. T., Classification of subfactors: the reduction to commuting squares. Invent. Math., 101 (1990), 19–43. · Zbl 0757.46054 · doi:10.1007/BF01231494
[54] – Subfactors and classification in von Neumann algebras, in Proceedings of the International Congress of Mathematicians, Vol. II (Kyoto, 1990), pp. 987–996. Math. Soc. Japan, Tokyo, 1991.
[55] – Classification of amenable subfactors of type II. Acta Math., 172 (1994), 163–255. · Zbl 0853.46059
[56] – An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math., 120 (1995), 427–445. · Zbl 0831.46069
[57] Popa, S. T. & Shlyakhtenko, D., Universal properties of L(F in subfactor theory. Acta Math., 191 (2003), 225–257. · Zbl 1079.46043 · doi:10.1007/BF02392965
[58] Reshetikhin, N. & Turaev, V. G., Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math., 103 (1991), 547–597. · Zbl 0725.57007 · doi:10.1007/BF01239527
[59] Reznikoff, S. A., Coefficients of the one- and two-gap boxes in the Jones-Wenzl idempotent. Indiana Univ. Math. J., 56 (2007), 3129–3150. · Zbl 1144.46053 · doi:10.1512/iumj.2007.56.3140
[60] Temperley, H. N. V. & Lieb, E. H., Relations between the ”percolation” and ”colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ”percolation” problem. Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280. · Zbl 0211.56703 · doi:10.1098/rspa.1971.0067
[61] Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, 18. de Gruyter, Berlin, 1994. · Zbl 0812.57003
[62] Turaev, V. G. & Viro, O. Y., State sum invariants of 3-manifolds and quantum 6j-symbols. Topology, 31 (1992), 865–902. · Zbl 0779.57009 · doi:10.1016/0040-9383(92)90015-A
[63] Vaes, S., Explicit computations of all finite index bimodules for a family of II1 factors. Ann. Sci. Éc. Norm. Supér., 41 (2008), 743–788. · Zbl 1194.46086
[64] Wenzl, H., On sequences of projections. C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 5–9. · Zbl 0622.47019
[65] – On the structure of Brauer’s centralizer algebras. Ann. of Math., 128 (1988), 173–193. · Zbl 0656.20040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.