A safe relational calculus for functional logic deductive databases. (English) Zbl 1270.68101

Brim, Lubos (ed.) et al., WFLP 2003. Selected papers of the 12th international workshop on functional and constraint logic programming (in connection with RDP’03, Federated conference on rewriting, deduction and programming), Valencia, Spain, June 12–13, 2003. Amsterdam: Elsevier. Electronic Notes in Theoretical Computer Science 86, No. 3, 168-204 (2003).
Summary: In this paper, we present an extended relational calculus for expressing queries in functional-logic deductive databases. This calculus is based on first-order logic and handles relation predicates, equalities and inequalities over partially defined terms, and approximation equations. For the calculus formulas, we have studied syntactic conditions in order to ensure the domain independence property. Finally, we have studied its equivalence w.r.t. the original query language, which is based on equality and inequality constraints.
For the entire collection see [Zbl 1271.68025].


68P15 Database theory
03B70 Logic in computer science
68N17 Logic programming
68N18 Functional programming and lambda calculus
68Q42 Grammars and rewriting systems


Full Text: Link


[1] Abiteboul, S.; Beeri, C.: The power of languages for the manipulation of complex values. The VLDB journal 4, 727-794 (1995)
[2] Abiteboul, S.; Hull, R.; Vianu, V.: ”Foundations of databases”. (1995) · Zbl 0848.68031
[3] Almendros-Jiménez, J. M. and A. Becerra-Terón, A Framework for Goal-Directed Bottom-Up Evaluation of Functional Logic Programs, in: Proc. of International Symposium on Functional and Logic Programming, FLOPS, LNCS 2024 (2001), pp. 153–169. · Zbl 0977.68580
[4] Almendros-Jiménez, J. M. and A. Becerra-Terón, A Relational Algebra for Functional Logic Deductive Databases, in: Proc. of Perspectives of System Informatics, PSI, LNCS 2890 (2003), pp. 494–508. · Zbl 1254.68103
[5] Almendros-Jiménez, J. M., A. Becerra-Terón, and J. Sánchez-Hernández, A Computational Model for Funtional Logic Deductive Databases, in: Proc. of International Conference on Logic Programming, ICLP, LNCS 2237 (2001), pp. 331–347.
[6] Benedikt, M.; Libkin, L.: ”Constraint databases”. 109-129 (2000) · Zbl 0949.68061
[7] Buneman, P.; Naqvi, S. A.; Tannen, V.; Wong, L.: Principles of programming with complex objects and collection types. Theoretical computer science, TCS 149, 3-48 (1995) · Zbl 0874.68092
[8] Codd, E. F.: A relational model of data for large shared data banks. Communications of the ACM, CACM 13, 377-387 (1970) · Zbl 0207.18003
[9] Codd, E. F.: Relational completeness of data base sublanguages. Database systems, 65-98 (1972)
[10] González-Moreno, J. C.; Hortalá-González, M. T.; López-Fraguas, F. J.; Rodríguez-Artalejo, M.: An approach to declarative programming based on a rewriting logic. Journal of logic programming, JLP 1, 47-87 (1999) · Zbl 0942.68060
[11] Hanus, M.: The integration of functions into logic programming: from theory to practice. Journal of logic programming, JLP 19,20, 583-628 (1994) · Zbl 0942.68526
[12] Hanus M., Curry: An Integrated Functional Logic Language, Version 0.8, Technical report, University of Kiel, Germany (2003).
[13] Hull, R.; Su, J.: Deductive query language for recursively typed complex objects. Journal of logic programming, JLP 35, 231-261 (1998) · Zbl 0905.68058
[14] Kanellakis, P.; Goldin, D.: Constraint query algebras. Constraints 1, 45-83 (1996)
[15] Kanellakis, P.; Kuper, G.; Revesz, P.: Constraint query languages. Journal of computer and system sciences, JCSS 51, 26-52 (1995)
[16] Kuper, G. M.; Libkin, L.; Paredaens, J.: ”Constraint databases”. (2000) · Zbl 0935.00022
[17] Libkin L., A Semantics-based Approach to Design of Query Languages for Partial Information, in: Proc. of Semantics in Databases, LNCS 1358 (1995), pp. 170–208.
[18] Liu, M.: Deductive database languages: problems and solutions. ACM computing surveys 31, 27-62 (1999)
[19] López-Fraguas, F. J., and J. Sánchez-Hernández, TOY: A Multiparadigm Declarative System, in: Procs. of Conference on Rewriting Techniques and Applications, RTA, LNCS 1631 (1999), pp. 244–247.
[20] López-Hernández, F. J., and J. Sánchez-Hernández, Proving Failure in Functional Logic Programs, in: Proc. of the International Conference on Computational Logi, CL, LNCS 1861 (2000), pp. 179–193. · Zbl 0983.68503
[21] Moreno-Navarro, J. J.; Rodríguez-Artalejo, M.: Logic programming with functions and predicates: the language BABEL. Journal of logic programming, JLP 12, 191-223 (1992) · Zbl 0754.68031
[22] Revesz, P. Z.: Safe query languages for constraint databases. ACM transactions on database systems, TODS 23, 58-99 (1998)
[23] Shmueli, O.; Tsur, S.; Zaniolo, C.: Compilation of set terms in the logic data language (LDL). Journal of logic programming, JLP 12, 89-119 (1992) · Zbl 0763.68026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.