×

zbMATH — the first resource for mathematics

Exact solutions of the Duffin-Kemmer-Petiau equation with a pseudoharmonic potential in the presence of a magnetic field in \((1+2)\) dimensions. (English) Zbl 1270.81079
Summary: We will consider the relativistic Duffin-Kemmer-Petiau equation in the presence of a pseudoharmonic potential in a magnetic field in the \((1+2)\)-dimensional space-time for spin-one particles. To derive the energy eigenvalues and corresponding eigenfunctions, the analytical Nikiforov-Uvarov Method is used and some explanatory figures are included.

MSC:
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81U15 Exactly and quasi-solvable systems arising in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Proca, G.A.: Alexandre Proca. Oeuvre Scientifique Publiée. S.I.A.G., Rome (1988). ISBN 2-9502854-0-6
[2] Duffin, R.J.: Phys. Rev. Lett. 54, 1114 (1938)
[3] Petiau, G. Mém. Cl. Sci., Acad. R. Belg., Coll. 8 16(2) (1936)
[4] Kemmer, N.: Proc. R. Soc. A 173, 91 (1939) · Zbl 0023.19003
[5] Loide, R.-K., Ots, I., Saar, R.: J. Phys. A, Math. Gen. 30, 4005 (1997) · Zbl 0924.35180
[6] Havare, A., Yetkin, T.: Class. Quantum Gravity 19, 2783 (2002) · Zbl 1004.83021
[7] Salti, M., Havare, A.: Mod. Phys. Lett. A 6, 451–465 (2005) · Zbl 1067.83511
[8] Fischbach, E., Nieto, M.M., Primakoff, H., Scott, C.K.: Phys. Rev. D 9, 2183–2186 (1974)
[9] Merad, M.: Int. J. Theor. Phys. 46, 2105 (2007) · Zbl 1134.81360
[10] Zarrinkamar, S., Rajabi, A.A., Rahimov, H., Hassanabadi, H.: Mod. Phys. Lett. A 26, 1621 (2011) · Zbl 1274.81116
[11] Kozak, R.E., Clark, B.C., Hama, S., Mishra, V.K., Mercer, R.L., Ray, L.: Phys. Rev. C 40, 5 (1989)
[12] Sogut, K., Havare, A.: Phys. Scr. 82, 045013 (2010)
[13] Chetouani, L., Merad, M., Boudjedaa, T., Lecheheb, A.: Int. J. Theor. Phys. 43, 1147 (2004) · Zbl 1071.81026
[14] Boutabia-Chéraitia, B., Boudjedaa, T.: Phys. Lett. A 338, 97 (2005) · Zbl 1136.81351
[15] Fuschich, W.I., Nikitin, A.G.: Symmetries of Equations of Quantum Mechanics. Allerton Press, New York (1994)
[16] Krajcik, R.A., Nieto, M.M.: Am. J. Phys. 45, 818 (1977)
[17] Krajcik, R.A., Nieto, M.M.: Phys. Rev. D 10, 4049 (1974)
[18] Krajcik, R.A., Nieto, M.M.: Phys. Rev. D 11, 1442 (1975)
[19] Krajcik, R.A., Nieto, M.M.: Phys. Rev. D 11, 1459 (1975)
[20] Krajcik, R.A., Nieto, M.M.: Phys. Rev. D 13, 924 (1976)
[21] Krajcik, R.A., Nieto, M.M.: Phys. Rev. D 15, 433 (1977)
[22] Nedjadi, Y., Barrett, R.C., J. Phys. A, Math. Gen. 27, 4301 (1994) · Zbl 0829.35135
[23] Yasuk, F., Berkdemir, C., Berkdemir, A., Önem, C.: Phys. Scr. 71(4), 340–343 (2005)
[24] Sogut, K., Havare, A.: Class. Quantum Gravity 23, 7129 (2006) · Zbl 1133.83374
[25] Kisel, V.V., Ovsiyuk, E.M., Red’kov, V.M., Tokarevskaya, N.G.: Act. Phys. Pol. B. 41 (2010)
[26] Aharonov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959) · Zbl 0099.43102
[27] Patil, S.H., Sen, K.D.: Phys. Lett. A 362, 109 (2007)
[28] Sage, M., Goodisman, J.: Am. J. Phys. 53, 350 (1985)
[29] Çetin, A.: Phys. Lett. A 372, 3852 (2008) · Zbl 1220.81110
[30] Nikiforov, A.F., Uvarov, V.B.: Special Function of Mathematical Physics. Birkhäuser, Basel (1988) · Zbl 0624.33001
[31] Tezcan, C., Sever, R.: Int. J. Theor. Phys. 48, 337 (2009) · Zbl 1162.81369
[32] Guertin, R.F., Wilson, T.L.: Phys. Rev. D 15, 1518 (1977)
[33] Gasiorowicz, S.: Quantum Physics. Wiley, New York (2003) · Zbl 1098.81001
[34] Goldman, I.I., Krivchenkov, V.D.: Problems in Quantum Mechanics. Pergamon, New York (1961) · Zbl 0094.23407
[35] Weissman, Y., Jortner, J.: Phys. Lett. A 70, 177 (1979)
[36] Seze, M.L.: Chem. Phys. 87, 431 (1984)
[37] Erkoç, S., Sever, R.: Phys. Rev. A 37, 2687 (1988)
[38] Szego, G.: Orthogonal Polynomials. Am. Math. Soc., New York (1959) (revised edition)
[39] Greiner, W.: Relativistic Quantum Mechanics: Wave Equations, 3rd edn. Springer, Berlin (2000) · Zbl 0998.81503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.