zbMATH — the first resource for mathematics

Bicrossproducts of algebraic quantum groups. (English) Zbl 1271.16032
Let \(A\) and \(B\) be two regular multiplier Hopf algebras, \(A\) acting on \(B\), \(B\) coacting on \(A\), making them a matched pair. Several properties of the Hopf algebra \(A\#B\) are studied. If \(A\) has left and right integrals, there exists a distinguished multiplier \(y\in M(B)\), satisfying a compatibility with the integrals of \(A\). Integrals, modular elements, scaling constant on \(A\#B\) are given when \(A\) and \(B\) are algebraic quantum groups. It is shown that the dual of \(A\#B\) is the smash product of the duals of \(A\) and \(B\). Complementary results are given for \(*\)-Hopf algebras. Several examples are studied throughout the paper: the case of a matched pair of groups, the case \(B=A^{cop}\), the case where the action or the coaction is trivial \(\dots\).

16T05 Hopf algebras and their applications
16T20 Ring-theoretic aspects of quantum groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
Full Text: DOI
[1] DOI: 10.1006/jabr.1997.7238 · Zbl 0902.16028 · doi:10.1006/jabr.1997.7238
[2] DOI: 10.1216/RMJ-2010-40-4-1149 · Zbl 1226.16023 · doi:10.1216/RMJ-2010-40-4-1149
[3] DOI: 10.1081/AGB-120016026 · Zbl 1038.16027 · doi:10.1081/AGB-120016026
[4] DOI: 10.1081/AGB-120016027 · Zbl 1038.16028 · doi:10.1081/AGB-120016027
[5] DOI: 10.1016/j.jalgebra.2003.03.003 · Zbl 1044.16028 · doi:10.1016/j.jalgebra.2003.03.003
[6] DOI: 10.1016/j.aim.2010.07.015 · Zbl 1206.43004 · doi:10.1016/j.aim.2010.07.015
[7] DOI: 10.1016/j.jalgebra.2011.06.029 · Zbl 1244.16025 · doi:10.1016/j.jalgebra.2011.06.029
[8] DOI: 10.1023/A:1011470032416 · Zbl 0993.16024 · doi:10.1023/A:1011470032416
[9] DOI: 10.1080/00927879908826688 · Zbl 0951.16013 · doi:10.1080/00927879908826688
[10] DOI: 10.1017/CBO9780511613104 · doi:10.1017/CBO9780511613104
[11] DOI: 10.2307/2154659 · Zbl 0809.16047 · doi:10.2307/2154659
[12] DOI: 10.1006/jabr.1996.0075 · Zbl 0864.17012 · doi:10.1006/jabr.1996.0075
[13] DOI: 10.1006/aima.1998.1775 · Zbl 0933.16043 · doi:10.1006/aima.1998.1775
[14] Van Daele A., Arab. J. Sci. Eng. 33 pp 505– (2008)
[15] DOI: 10.1007/s10468-007-9045-6 · Zbl 1133.16029 · doi:10.1007/s10468-007-9045-6
[16] A. Van Daele and Y. Zhang, Hopf Algebras and Quantum Groups, eds. S. Caenepeel and F. Van Oyestayen (Dekker, New York, 1998) pp. 259–309.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.