×

zbMATH — the first resource for mathematics

Ioffe times in DIS from a dipole model fit. (English) Zbl 1271.81175
Summary: We present a study of Ioffe times in deep inelastic electron-proton scattering. We deduce ’experimental’ Ioffe-time distributions from the small-\(x\) HERA data as described by a particular colour-dipole-model fit. We show distributions for three representative \(\gamma^*p\) c.m. energies W and various values of the photon virtuality \(Q^2\). These distributions are rather broad for transversely and very narrow for longitudinally polarised virtual photons. The Ioffe times for \(W\) = 150 GeV, for example, range from around \(10^3\) fm for \(Q^2\) = 1 GeV\({}^2\) to around 10 fm for \(Q^2\) = 100 GeV\({}^2\). Based on our results we discuss consequences for the limitations of applicability of the dipole picture.
MSC:
81V05 Strong interaction, including quantum chromodynamics
81V35 Nuclear physics
Software:
Cuba; GSL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ZEUS collaboration; Breitweg, J.; etal., Measurement of the proton structure function F2 at very low \(Q\)\^{2} at HERA, Phys. Lett., B 487, 53, (2000)
[2] H1 collaboration; Adloff, C.; etal., Deep-inelastic inclusive e p scattering at low x and a determination of \(α\)_{\(s\)}, Eur. Phys. J., C 21, 33, (2001)
[3] ZEUS collaboration; Chekanov, S.; etal., Measurement of the neutral current cross section and F2 structure function for deep inelastic e+ p scattering at HERA, Eur. Phys. J., C 21, 443, (2001)
[4] H1 collaboration; Adloff, C.; etal., Measurement and QCD analysis of neutral and charged current cross sections at HERA, Eur. Phys. J., C 30, 1, (2003)
[5] ZEUS collaboration; Chekanov, S.; etal., High-\(Q\)\^{2} neutral current cross sections in e+ p deep inelastic scattering at \( \sqrt s = 318\;{\text{GeV}} \), Phys. Rev., D 70, 052001, (2004)
[6] Gribov, VN; Ioffe, BL; Pomeranchuk, IY, What is the range of interactions at high-energies, Sov. J. Nucl. Phys., 2, 549, (1966)
[7] Ioffe, BL, Space-time picture of photon and neutrino scattering and electroproduction cross-section asymptotics, Phys. Lett., B 30, 123, (1969)
[8] Nambu, Y., Possible existence of a heavy neutral meson, Phys. Rev., 106, 1366, (1957)
[9] Frazer, WR; Fulco, JR, Effect of a pion pion scattering resonance on nucleon structure, Phys. Rev. Lett., 2, 365, (1959)
[10] Frazer, WR; Fulco, JR, Effect of a pion-pion scattering resonance on nucleon structure. II, Phys. Rev., 117, 1609, (1960)
[11] Sakurai, JJ, Theory of strong interactions, Annals Phys., 11, 1, (1960)
[12] Gell-Mann, M.; Zachariasen, F., Form-factors and vector mesons, Phys. Rev., 124, 953, (1961)
[13] J.J. Sakurai, Currents and Mesons, The University of Chicago Press, Chicago U.S.A. (1969).
[14] Bauer, TH; Spital, RD; Yennie, DR; Pipkin, FM, The hadronic properties of the photon in high-energy interactions, Rev. Mod. Phys., 50, 261, (1978)
[15] Sakurai, JJ, Vector meson dominance and high-energy electron proton inelastic scattering, Phys. Rev. Lett., 22, 981, (1969)
[16] Schildknecht, D., Vector meson dominance, photo- and electroproduction from nucleons, Springer Tracts Mod. Phys., 63, 57, (1972)
[17] Schildknecht, D., Vector meson dominance, Acta Phys. Polon., B 37, 595, (2006)
[18] Nikolaev, NN; Zakharov, BG, Colour transparency and scaling properties of nuclear shadowing in deep inelastic scattering, Z. Phys., C 49, 607, (1991)
[19] Nikolaev, NN; Zakharov, BG, Pomeron structure function and diffraction dissociation of virtual photons in perturbative QCD, Z. Phys., C 53, 331, (1992)
[20] Mueller, AH, Soft gluons in the infinite momentum wave function and the BFKL pomeron, Nucl. Phys., B 415, 373, (1994)
[21] Golec-Biernat, KJ; Wüsthoff, M., Saturation effects in deep inelastic scattering at low \(Q\)\^{2} and its implications on diffraction, Phys. Rev., D 59, 014017, (1999)
[22] Bartels, J.; Golec-Biernat, KJ; Kowalski, H., A modification of the saturation model: DGLAP evolution, Phys. Rev., D 66, 014001, (2002)
[23] Iancu, E.; Itakura, K.; Munier, S., Saturation and BFKL dynamics in the HERA data at small x, Phys. Lett., B 590, 199, (2004)
[24] S. Donnachie, H. G. Dosch, O. Nachtmann and P. Landshoff, Pomeron Physics and QCD, Cambridge University Press, Cambridge U.K. (2002).
[25] L. Motyka, K. Golec-Biernat and G. Watt, Dipole models and parton saturation in ep scattering, in H. Jung et al., Proceedings of the workshop: HERA and the LHC workshop series on the implications of HERA for LHC physics [arXiv:0809.4191] [SPIRES].
[26] Ewerz, C.; Nachtmann, O., Towards a nonperturbative foundation of the dipole picture: I. functional methods, Annals Phys., 322, 1635, (2007)
[27] Ewerz, C.; Nachtmann, O., Towards a nonperturbative foundation of the dipole picture: II. high energy limit, Annals Phys., 322, 1670, (2007)
[28] Ewerz, C.; Nachtmann, O., Bounds on ratios of DIS structure functions from the color dipole picture, Phys. Lett., B 648, 279, (2007)
[29] Ewerz, C.; Manteuffel, A.; Nachtmann, O., On the range of validity of the dipole picture, Phys. Rev., D 77, 074022, (2008)
[30] Braun, V.; Gornicki, P.; Mankiewicz, L., Ioffe - time distributions instead of parton momentum distributions in description of deep inelastic scattering, Phys. Rev., D 51, 6036, (1995)
[31] Kovchegov, YV; Strikman, M., Ioffe time in double logarithmic approximation, Phys. Lett., B 516, 314, (2001)
[32] O. Nachtmann, Elementary particle physics: Concepts and phenomena, Springer Verlag, Berlin, Heidelberg, Germany (1990).
[33] K. Ito ed., Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge Massachussets (1977), 215 C, p. 686.
[34] H1 collaboration; Aaron, FD; etal., Measurement of the proton structure function \(F\)_{\(L\)} at low \(x\), Phys. Lett., B 665, 139, (2008)
[35] Hahn, T., CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78, (2005)
[36] CUBA library, http://www.feynarts.de/cuba.
[37] M. Galassi et al., GNU scientific library reference manual, 3rd edition, ISBN 0954612078 (2009).
[38] GSL library, http://www.gnu.org/software/gsl/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.