zbMATH — the first resource for mathematics

\(\Gamma\)-convergence of energies for nematic elastomers in the small strain limit. (English) Zbl 1272.76028
Summary: We study two variational models recently proposed in the literature [A. DeSimone and L. Teresi, Eur. Phys. J. E 29, 191–204 (2009); P. Cesana and A. DeSimone, Math. Models Methods Appl. Sci. 19, No. 4, 601–630 (2009; Zbl 1165.49014)] to describe the mechanical behaviour of nematic elastomers either in the fully nonlinear regime or in the framework of a geometrically linear theory. We show that, in the small strain limit, the energy functional of the first one \(\Gamma\)-converges to the relaxation of the second one, a functional for which an explicit representation formula is available.

76A15 Liquid crystals
82D30 Statistical mechanical studies of random media, disordered materials (including liquid crystals and spin glasses)
Full Text: DOI
[1] Bladon P., Terentjev E.M., Warner M.: Transitions and instabilities in liquid-crystal elastomers. Phys. Rev. E 47, R3838–R3840 (1993) · doi:10.1103/PhysRevE.47.R3838
[2] Cesana P., DeSimone A.: Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19, 601–630 (2009) · Zbl 1165.49014 · doi:10.1142/S0218202509003541
[3] Cesana P.: Relaxation of multi-well energies in linearized elasticity and applications to nematic elastomers. Arch. Ration. Mech. Anal. 197(3), 903–923 (2010) · Zbl 1388.74009 · doi:10.1007/s00205-009-0283-0
[4] Conti, S., DeSimone, A., Dolzmann, G.: Semi-soft elasticity and director reorientation in stretched sheets of nematic elastomers. Phys. Rev. E 60, 61710-1-8 (2002a)
[5] Conti S., DeSimone A., Dolzmann G.: Soft elastic response of stretched sheets of nematic elastomers: a numerical study. J. Mech. Phys. Solids 50, 1431–1451 (2002b) · Zbl 1030.76006 · doi:10.1016/S0022-5096(01)00120-X
[6] DeSimone A.: Energetics of fine domain structures. Ferroelectrics 222, 275–284 (1999) · doi:10.1080/00150199908014827
[7] DeSimone A., Dolzmann G.: Macroscopic response of nematic elastomers via relaxation of a class of SO(3)-invariant energies. Arch. Ration. Mech. Anal. 161, 181–204 (2002) · Zbl 1017.74049 · doi:10.1007/s002050100174
[8] DeSimone A., Teresi L.: Elastic energies for nematic elastomers. Eur. Phys. J. E 29, 191–204 (2009) · doi:10.1140/epje/i2009-10467-9
[9] Flory P.J.: Principles of Polymer Chemistry. Cornell University Press, London (1953)
[10] Fukunaga A., Urayama K., Takigawa T., DeSimone A., Teresi L.: Dynamics of electro-opto-mechanical effects in swollen nematic elastomers. Macromolecules 41, 9389–9396 (2008) · doi:10.1021/ma801639j
[11] Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981) · Zbl 0559.73001
[12] Kohn R.V.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991) · Zbl 0825.73029 · doi:10.1007/BF01135336
[13] Schmidt B.: Linear \(\Gamma\)-limits of multiwell energies in nonlinear elasticity theory. Contin. Mech. Thermodyn. 20(6), 375–396 (2008) · Zbl 1160.74321 · doi:10.1007/s00161-008-0087-8
[14] Warner M., Terentjev E.M.: Liquid Crystal Elastomers. Clarendon Press, Oxford (2003) · Zbl 0942.74004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.