×

zbMATH — the first resource for mathematics

Direct adaptive neural tracking control for a class of stochastic pure-feedback nonlinear systems with unknown dead-zone. (English) Zbl 1272.93110
Summary: This paper considers the problem of adaptive neural tracking control for a class of nonlinear stochastic pure-feedback systems with unknown dead zone. Based on the radial basis function neural networks’ online approximation capability, a novel adaptive neural controller is presented via backstepping technique. It is shown that the proposed controller guarantees that all the signals of the closed-loop system are semi-globally, uniformly bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the suggested control scheme.

MSC:
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
93C40 Adaptive control/observation systems
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Krstić, Nonlinear and Adaptive Control Design (1995)
[2] Annaswamy, Adaptive control of nonlinear systems with a triangular structure, IEEE Transactions on Automatic Control 39 (7) pp 1411– (1994) · Zbl 0806.93034 · doi:10.1109/9.299624
[3] Pan, Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion, SIAM Journal on Control and Optimization 37 (3) pp 957– (1999) · Zbl 0924.93046 · doi:10.1137/S0363012996307059
[4] Deng, Stochastic nonlinear stabilization, Part I: a backstepping design, Systems and Control Letters 32 (3) pp 143– (1997) · Zbl 0902.93049 · doi:10.1016/S0167-6911(97)00068-6
[5] Deng, Stabilization of stochastic nonlinear systems driven by noise of unknown covariance, IEEE Transactions on Automatic Control 46 (8) pp 1237– (2000) · Zbl 1008.93068 · doi:10.1109/9.940927
[6] Ji, Adaptive output-feedback tracking of stochastic nonlinear systems, IEEE Transactions on Automatic Control 51 (2) pp 355– (2006) · Zbl 1366.93620 · doi:10.1109/TAC.2005.863501
[7] Liu, Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index, Science in China Series F: Information Sciences 46 (2) pp 126– (2003) · Zbl 1185.93046 · doi:10.1360/03yf9011
[8] Liu, Practical output feedback risk sensitive control for stochastic nonlinear systems under stable zero-dynamics, SIAM Journal on Control and Optimization 45 (3) pp 885– (2006) · Zbl 1117.93067 · doi:10.1137/S0363012903439185
[9] Xie, Decentralized stabilization of a class of interconnected stochastic nonlinear systems, IEEE Transactions on Automatic Control 45 (1) pp 132– (2000) · Zbl 0983.93003 · doi:10.1109/9.827370
[10] Liu, Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica 43 (2) pp 238– (2007) · Zbl 1115.93076 · doi:10.1016/j.automatica.2006.08.028
[11] Yu, Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics, IEEE Transactions on Automatic Control 55 (2) pp 304– (2010) · Zbl 1368.93584 · doi:10.1109/TAC.2009.2034924
[12] Wu, Adaptive backstepping controller design using stochastic small-gain theorem, Automatica 43 (4) pp 608– (2007) · Zbl 1114.93104 · doi:10.1016/j.automatica.2006.10.020
[13] Wu, Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching, Automatica 45 (4) pp 997– (2009) · Zbl 1162.93044 · doi:10.1016/j.automatica.2008.12.002
[14] Li, Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions, SIAM Journal on Control and Optimization 49 (3) pp 1262– (2011) · Zbl 1228.93101 · doi:10.1137/100798259
[15] Xie, Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization, Automatica 45 (1) pp 126– (2009) · Zbl 1154.93427 · doi:10.1016/j.automatica.2008.10.006
[16] Xie, State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics, International Journal of Robust and Nonlinear Control 17 (14) pp 1343– (2007) · Zbl 1127.93354 · doi:10.1002/rnc.1177
[17] Wang, Stable adaptive fuzzy control of nonlinear systems, IEEE Transactions on Fuzzy Systems 1 (2) pp 146– (1993) · doi:10.1109/91.227383
[18] Liu, Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems, Information Sciences 177 (18) pp 3901– (2007) · Zbl 1121.93037 · doi:10.1016/j.ins.2007.03.005
[19] Tong, Direct Adaptive fuzzy output tracking control of nonlinear systems, Fuzzy Sets and Systems 128 (1) pp 107– (2002) · Zbl 0995.93512 · doi:10.1016/S0165-0114(01)00058-6
[20] Tong, A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control, IEEE Transactions on Fuzzy Systems 17 (5) pp 1059– (2009) · doi:10.1109/TFUZZ.2009.2021648
[21] Li, A novel robust adaptive fuzzy- tracking control for a class of nonlinear multi-input/ multi-output systems, IEEE Transactions on Fuzzy Systems 18 (1) pp 150– (2010) · doi:10.1109/TFUZZ.2009.2038277
[22] Tong, Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 41 (6) pp 1693– (2011) · doi:10.1109/TSMCB.2011.2159264
[23] Chen, Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica 45 (6) pp 1530– (2009) · Zbl 1166.93341 · doi:10.1016/j.automatica.2009.02.025
[24] Wang, Fuzzy adaptive control of stochastic nonlinear systems with unknown virtual control gain function, ACTA Automatica Sinica 32 (2) pp 170– (2006)
[25] Yang, A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 34 (3) pp 406– (2004) · doi:10.1109/TSMCA.2004.824870
[26] Wang, Direct adaptive neural control for stabilization of nonlinear time-delay systems, Science China Information Sciences 53 (4) pp 800– (2010) · doi:10.1007/s11432-010-0075-z
[27] Psillakis HE Alexandridis AT Adaptive neural tracking for a class of SISO uncertain and stochastic nonlinear systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 7822 7827
[28] Li, Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems, International Journal of Robust and Nonlinear Control 21 (4) pp 452– (2011) · Zbl 1213.93174 · doi:10.1002/rnc.1609
[29] Shiriaev AS Ludvigsen H Egeland O Fradkov AL Swinging up of non-affine in control pendulum Proceedings of American Control Conference 1999 4039 4044
[30] Ge, Adaptive NN control of uncertain nonlinear pure-feedback systems, Automatica 38 (4) pp 671– (2002) · Zbl 0998.93025 · doi:10.1016/S0005-1098(01)00254-0
[31] Wang, Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form, Automatica 38 (8) pp 1365– (2002) · Zbl 0998.93026 · doi:10.1016/S0005-1098(02)00034-1
[32] Park, Direct adaptive controller for non-affine nonlinear systems using self-structuring neural networks, IEEE Transactions on Neural Networks 16 (2) pp 414– (2005) · doi:10.1109/TNN.2004.841786
[33] Wang, An ISS-modular approach for adaptive neural control of pure-feedback systems, Automatica 42 (5) pp 723– (2006) · Zbl 1137.93367 · doi:10.1016/j.automatica.2006.01.004
[34] Du, Adaptive neural network control for a class of low-triangular-structured nonlinear systems, IEEE Transactions on Neural Networks 17 (2) pp 509– (2006) · doi:10.1109/TNN.2005.863403
[35] Liu, Adaptive fuzzy controller design of nonlinear systems with unknown gain sign, Nonlinear Dynamics 58 (4) pp 687– (2009) · Zbl 1183.93090 · doi:10.1007/s11071-009-9510-3
[36] Labiod, Indirect adaptive fuzzy control for a class of nonaffine nonlinear systems with unknown control directions, International Journal of Control, Automation, and Systems 8 (4) pp 903– (2010) · doi:10.1007/s12555-010-0425-z
[37] Wang M Ge SS Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference 2009 841 846
[38] Chen, Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints, ISA Transactions 48 (3) pp 304– (2009) · doi:10.1016/j.isatra.2009.04.002
[39] Zhang, Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form, Automatica 44 (7) pp 1895– (2008) · Zbl 1149.93322 · doi:10.1016/j.automatica.2007.11.025
[40] Recker DA Kokotovic PV Rhode D Winkelman J Adaptive nonlinear control of systems containing a dead-zone Proceedings of 30th IEEE Conference on Decision and Control 1991 2111 2115
[41] Zhou, Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity, IEEE Transactions on Automatic Control 51 (3) pp 504– (2006) · Zbl 1366.93306 · doi:10.1109/TAC.2005.864200
[42] Zhang, Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs, Automatica 43 (6) pp 1021– (2007) · Zbl 1282.93152 · doi:10.1016/j.automatica.2006.12.014
[43] Yu JJ Zhang KJ Fei SM Direct fuzzy tracking control of a class of nonaffine sStochastic nonlinear systems with unknown dead-zone input Proceedings of the 17th World Congress The International Federation of Automatic Control 2008 12236 12241
[44] Has’ minskii, Stochastic Stability of Differential Equations (1980)
[45] Sanner, Gaussian networks for direct adaptive control, IEEE Transactions on Neural Networks 3 (6) pp 837– (1992) · doi:10.1109/72.165588
[46] Apostol, Mathematical Analysis (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.