×

zbMATH — the first resource for mathematics

Asymptotic profile of a linearized Navier-Stokes flow past a rotating body. (English) Zbl 1273.35214
Summary: Consider a rigid body in a three-dimensional Navier-Stokes liquid moving with a nonzero velocity and rotating with a nonzero angular velocity that are both constant when referred to a frame attached to the body. Linearizing the associated steady-state equations of motion, we obtain the exterior domain Oseen equations in a rotating frame of reference. We analyze the structure of weak solutions to these equations and identify the leading term in the asymptotic expansion of the corresponding velocity field.

MSC:
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B40 Asymptotic behavior of solutions to PDEs
35C20 Asymptotic expansions of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I-Dee Chang and Robert Finn, On the solutions of a class of equations occurring in continuum mechanics, with application to the Stokes paradox, Arch. Rational Mech. Anal. 7 (1961), 388 – 401. · Zbl 0104.42401 · doi:10.1007/BF00250771 · doi.org
[2] Paul Deuring, Stanislav Kračmar, and Šárka Nečasová, On pointwise decay of linearized stationary incompressible viscous flow around rotating and translating bodies, SIAM J. Math. Anal. 43 (2011), no. 2, 705 – 738. · Zbl 1231.35143 · doi:10.1137/100786198 · doi.org
[3] Reinhard Farwig and Toshiaki Hishida, Asymptotic profile of steady Stokes flow around a rotating obstacle, Manuscripta Math. 136 (2011), no. 3-4, 315 – 338. · Zbl 1229.35172 · doi:10.1007/s00229-011-0479-0 · doi.org
[4] Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994. Linearized steady problems. Giovanni P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. II, Springer Tracts in Natural Philosophy, vol. 39, Springer-Verlag, New York, 1994. Nonlinear steady problems. · Zbl 0949.35004
[5] Giovanni P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle, J. Elasticity 71 (2003), no. 1-3, 1 – 31. Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III, Vol. II. · Zbl 1156.76367 · doi:10.1023/B:ELAS.0000005543.00407.5e · doi.org
[6] Giovanni P. Galdi and Mads Kyed, Steady-state Navier-Stokes flows past a rotating body: Leray solutions are physically reasonable, Arch. Ration. Mech. Anal. 200 (2011), no. 1, 21 – 58. · Zbl 1229.35176 · doi:10.1007/s00205-010-0350-6 · doi.org
[7] Giovanni P. Galdi and Ana L. Silvestre, The steady motion of a Navier-Stokes liquid around a rigid body, Arch. Ration. Mech. Anal. 184 (2007), no. 3, 371 – 400. · Zbl 1111.76010 · doi:10.1007/s00205-006-0026-4 · doi.org
[8] Jean Leray, Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82. · Zbl 0006.16702
[9] Carl Wilhelm Oseen, Hydrodynamik, Akademische Verlagsgesellschaft M.B.H., Leipzig, 1927.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.