Modelling the use of Wolbachia to control dengue fever transmission. (English) Zbl 1273.92034

Summary: Experiments and field trials have shown that the intracellular bacterium Wolbachia may be introduced into populations of the mosquito Aedes aegypti, the primary vector for dengue fever. In the absence of Wolbachia, a mosquito acquiring the dengue virus from an infected human enters an exposed (infected but not infectious) period before becoming infectious itself. A Wolbachia-infected mosquito that acquires dengue (i) may have a reduced lifespan, so that it is less likely to survive the exposed period and become infectious, and (ii) may have a reduced ability to transmit dengue, even if it has survived the exposed period. Wolbachia introduction has therefore been suggested as a potential dengue control measure.
We set up a mathematical model for the system to investigate this suggestion and to evaluate the desirable properties of the Wolbachia strain to be introduced. We show that Wolbachia has excellent potential for dengue control in areas where \(R_0\) is not too large. However, if \(R_0\) is large, Wolbachia strains that reduce but do not eliminate dengue transmission have little effect on endemic steady states or epidemic sizes. Unless control measures to reduce \(R_0\) by reducing mosquito populations are also put in place, it may be worth the extra effort in such cases to introduce Wolbachia strains that eliminate dengue transmission completely.


92C60 Medical epidemiology
37N25 Dynamical systems in biology
Full Text: DOI


[1] Adams, B., & Boots, M. (2006). Modelling the relationship between antibody-dependent enhancement and immunological distance with application to dengue. J. Theor. Biol., 242, 337–346.
[2] Anderson, R. M., & May, R. M. (1992). Indirectly transmitted microparasites. In Infectious diseases of humans (pp. 374–429). Oxford: Oxford University Press.
[3] Angel, S., Sheppard, S., & Civco, D. (2005). The dynamics of global urban expansion. Washington: Transport and Urban Development Department, World Bank.
[4] Bian, G., Xu, Y., Lu, P., Xie, Y., & Xi, Z. (2010). The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog., 6, 1–10.
[5] Britton, N. F. (2003). Essential mathematical biology. Berlin: Springer. · Zbl 1037.92001
[6] Caspari, E., & Watson, G. S. (1959). On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution, 13, 568–570.
[7] Chowell, G., Diaz-Dueñas, P., Miller, J. C., Alcazar-Velazco, A., Hyman, J. K., Fenimore, P. W., & Castillo-Chavez, C. (2007). Estimating the reproduction number of dengue fever from spatial epidemic data. Math. Biosci., 208, 571–589. · Zbl 1119.92055
[8] Diekmann, O., & Heesterbeek, J. A. P. (2000). Wiley series in mathematical and computational biology: Mathematical epidemiology of infectious diseases. New York: Wiley.
[9] Dye, C. (1984). Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Anim. Ecol., 53, 247–268.
[10] Farkas, J. Z., & Hinow, P. (2010). Structured and unstructured continuous models for Wolbachia infections. Bull. Math. Biol., 72, 2067–2088. · Zbl 1201.92044
[11] Focks, D. A., Haile, D. G., Daniels, E., & Mount, G. A. (1993). Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J. Med. Entomol., 30, 1018–1028.
[12] Focks, D. A., & Barrera, R. (2006). Dengue transmission dynamics: assessment and implications for control. In WHO scientific working group report on dengue (pp. 92–109).
[13] Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev., 11, 480–496.
[14] Gurney, W. S. C., Blythe, S. P., & Nisbet, R. M. (1980). Nicholson’s blowflies revisited. Nature, 287, 17–21.
[15] Hoffmann, A. A., et al. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476, 454–457.
[16] Hughes, G. L., Koga, R., Xue, P., Fukatsu, T., & Rasgon, J. L. (2011). Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog., 7(5), e1002043. doi: 10.1371/journal.ppat.1002043 .
[17] Keeling, M. J., Jiggins, F. M., & Read, J. M. (2003). The invasion and coexistence of competing Wolbachia strains. Heredity, 91, 382–388.
[18] Lam, S. K., et al. (2011). Preparing for introduction of a dengue vaccine: recommendations from the 1st dengue v2V Asia–Pacific meeting. Vaccine, 29, 9417–9422.
[19] Maynard Smith, J. (1974). Models in ecology. Cambridge: Cambridge University Press. · Zbl 0312.92001
[20] McMeniman, C. J., Lane, R. V., Cass, B. N., Fong, A. W. C., Sidhu, M., Wang, Y., & O’Neill, S. L. (2009). Stable introduction of life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323, 141–144.
[21] Newton, E. A., & Reiter, P. (1992). A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics. Am. J. Trop. Med. Hyg., 47, 709–720.
[22] Otero, M., & Solari, H. (2010). Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci., 223, 32–46. · Zbl 1180.92057
[23] Schrauber, J. G. (2012). Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. J. Theor. Biol., 297, 26–32. · Zbl 1336.92085
[24] Scott, T. W., et al. (2000). Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J. Med. Entomol., 30, 94–99.
[25] Sheppard, P. M., Macdonald, W. W., Tonn, R. J., & Grab, B. (1969). The dynamics of an adult population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok. J. Anim. Ecol., 38, 661–702.
[26] Southwood, T. R. E., Murdie, G., Yasuno, M., Tonn, R. J., & Reader, P. M. (1972). Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull. World Health Organ., 46, 211–226.
[27] Turelli, M. (2009). Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64, 232–241.
[28] Turelli, M., & Hoffmann, A. (1991). Rapid spread of an inherited incompatibility factor in California Drosophila. Nature, 353, 440–442.
[29] van den Driessche, P., & Watmough, J. (2008). Further notes on the basic reproduction number. In Mathematical epidemiology. Lecture notes in mathematics: Vol. 1945 (pp. 159–178). Berlin: Springer. · Zbl 1206.92038
[30] Walker, T., et al. (2011). The wMel Wolbachia strain blocks dengue and invades Aedes aegypti population. Nature, 476, 450–453.
[31] Walsh, R. K., Facchinelli, L., Ramsey, J. M., Bond, J. G., & Gould, F. (2011). Assessing the impact of density dependence in field populations of Aedes aegypti. J. Vector Ecol., 36, 300–307.
[32] Watts, D. M., et al. (1987). Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg., 36, 143–152.
[33] Werren, J. H. (1997). Biology of Wolbachia. Annu. Rev. Entomol., 42, 587–609.
[34] Werren, J. H., Guo, L., & Windsor, D. W. (1995). Distribution of Wolbachia among neotropical arthropods. Proc. R. Soc. Lond. B, 262, 197–204.
[35] Werren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6, 741–751.
[36] World Health Organisation (2012). Impact of dengue, WHO website, accessed 2 April 2012, http://www.who.int/csr/disease/dengue/impact/en/ .
[37] Xi, Z., Khoo, C. C., & Dobson, S. L. (2005). Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science, 310, 326–328.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.