×

zbMATH — the first resource for mathematics

Adaptive anti-lag synchronization of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters. (English) Zbl 1273.93007
Summary: In this paper we present the adaptive Anti-Lag Synchronization (ALS) of two identical or non-identical hyperchaotic complex nonlinear systems with uncertain parameters. The concept of ALS is not detected yet in the literature. Based on the Lyapunov function a scheme is designed to achieve ALS of hyperchaotic attractors of these systems. The ALS of two identical complex Lü systems and two different hyperchaotic complex Lorenz and Lü systems are taken as two examples to verify the feasibility of the presented scheme. These hyperchaotic complex systems appear in several applications in physics, engineering and other applied sciences. Numerical simulations are calculated to demonstrate the effectiveness of the proposed synchronization scheme and verify the theoretical results.

MSC:
93A14 Decentralized systems
93C10 Nonlinear systems in control theory
93C15 Control/observation systems governed by ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Lorenz, E.N., Deterministic non-periods flows, Journal of the atmospheric sciences, 20, 130-141, (1963)
[2] Chen, G.; Dong, X., From chaos to order: methodologies, perspectives and applications, (1998), World Scientific Singapore
[3] Lü, J.; Chen, G., A new chaotic attractor coined, International journal of bifurcation and chaos, 12, 659-661, (2002) · Zbl 1063.34510
[4] Lü, J.; Chen, G.; Cheng, D.Z., A new chaotic system and beyond: the general Lorenz-like system, International journal of bifurcation and chaos, 14, 1507-1537, (2004) · Zbl 1129.37323
[5] Wang, X.Y.; Wang, M.J., A hyperchaos generated from Lorenz system, Physica A, 387, 3751-3758, (2008)
[6] Rössler, O., An equation for the hyperchaos, Physics letters A, 71, 155-157, (1979) · Zbl 0996.37502
[7] Cafagna, D.; Grassi, G., New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring, International journal of bifurcation and chaos, 13, 2889-2903, (2003) · Zbl 1057.37026
[8] Zhou, T.; Tang, Y.; Chen, G., Complex dynamical behaviors of the chaotic Chen’s system, International journal of bifurcation and chaos, 9, 2561-2574, (2003) · Zbl 1046.37018
[9] Chen, A.M.; Lu, J.A.; Lü, J.; Yu, S.M., Generating hyperchaotic Lü attractor via state feedback control, Physica A, 364, 103-110, (2006)
[10] Wang, G.; Zhang, X.; Zheng, Y.; Li, Y., A new modified hyperchaotic Lü system, Physica A, 371, 260-272, (2006)
[11] Yang, Q.; Zhang, K.; Chen, G., Hyperchaotic attractors from a linearly controlled Lorenz system, Nonlinear analysis: real world applications, 10, 1601-1617, (2009) · Zbl 1175.37041
[12] Fowler, A.C.; Gibbon, J.D.; McGuinness, M.J., The complex Lorenz equations, Physica D, 4, 139-163, (1982) · Zbl 1194.37039
[13] E.E. Mahmoud, Dynamics and synchronization of new hyperchaotic complex Lorenz system, Mathematical and Computer Modelling, doi:10.1016/j.mcm.2011.11.053. · Zbl 1255.93102
[14] Mahmoud, G.M.; Bountis, T.; Mahmoud, E.E., Active control and global synchronization of the complex Chen and Lü systems, International journal of bifurcation and chaos, 17, 4295-4308, (2007) · Zbl 1146.93372
[15] Mahmoud, G.M.; Mahmoud, E.E., Complete synchronization of chaotic complex nonlinear systems with uncertain parameters, Nonlinear dynamics, 62, 875-882, (2010) · Zbl 1215.93114
[16] Mahmoud, G.M.; Mahmoud, E.E., Synchronization and control of hyperchaotic complex Lorenz system, Mathematics and computers in simulation, 80, 2286-2296, (2010) · Zbl 1195.93060
[17] Mahmoud, G.M.; Ahmed, M.E.; Mahmoud, E.E., Analysis of hyperchaotic complex Lorenz systems, International journal of modern physics C, 19, 1477-1494, (2008) · Zbl 1170.37311
[18] Mahmoud, G.M.; Mahmoud, E.E.; Ahmed, M.E., On the hyperchaotic complex Lü system, Nonlinear dynamics, 58, 725-738, (2009) · Zbl 1183.70053
[19] Mahmoud, G.M.; Mahmoud, E.E.; Ahmed, M.E., Hyperchaotic complex Chen system and its dynamics, International journal of applied mathematics and statistics, 12, 90-100, (2007) · Zbl 1136.37327
[20] Ning, C.Z.; Haken, H., Detuned lasers and the complex Lorenz equations-subcritical and supercritical Hopf bifurcations, Physical review A, 41, 3827-3837, (1990)
[21] Kiselev, A.D., Symmetry breaking and bifurcations in complex Lorenz model, Journal of physical studies, 2, 30-37, (1998) · Zbl 1079.37504
[22] Mahmoud, G.M.; Bountis, T.; AbdEl-Latif, G.M.; Mahmoud, E.E., Chaos synchronization of two different complex Chen and Lü systems, Nonlinear dynamics, 55, 43-53, (2009) · Zbl 1170.70011
[23] Mahmoud, G.M.; Mahmoud, E.E., Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems, Nonlinear dynamics, 61, 141-152, (2010) · Zbl 1204.93096
[24] Liu, P.; Liu, S., Anti-synchronization between different chaotic complex systems, Physica scripta, 83, 065006, (2011) · Zbl 1225.37117
[25] Liu, S.; Liu, P., Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters, Nonlinear analysis: real world applications, 12, 3046-3055, (2010) · Zbl 1231.37020
[26] Mahmoud, G.M.; Mahmoud, E.E., Lag synchronization of hyperchaotic complex nonlinear systems, Nonlinear dynamics, 67, 1613-1622, (2012) · Zbl 1243.93044
[27] Mahmoud, G.M.; Mahmoud, E.E., Modified projective lag synchronization of two non-identical hyperchaotic complex nonlinear systems, International journal of bifurcation and chaos, 21, 2369-2379, (2011) · Zbl 1248.34080
[28] Lee, T.H.; Park, J.H., Adaptive functional projective lag synchronization of a hyperchaotic Rössler system, Chinese physics letters, 26, 090507, (2009)
[29] Kwon, O.M.; Park, J.H.; Lee, S.M., Secure communication based on chaotic synchronization via interval time-varying delay feedback control, Nonlinear dynamics, 63, 239-252, (2011) · Zbl 1215.93127
[30] Liao, T.-L.; Lin, S.-H., Adaptive control and synchronization of Lorenz systems, Journal of the franklin institute, 336, 925-937, (1999) · Zbl 1051.93514
[31] Xu, Y.; Zhou, W.; Fang, J.; Sun, W.; Pan, L., Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling, Journal of the franklin institute, 347, 1566-1576, (2010) · Zbl 1202.93023
[32] He, H.; Tu, J.; Xiong, P., Lr-synchronization and adaptive synchronization of a class of chaotic lurie systems under perturbations, Journal of the franklin institute, 348, 2257-2269, (2011) · Zbl 1239.93050
[33] Hao, F., Absolute stability of uncertain discrete Lur’e systems and maximum admissible perturbed bounds, Journal of the franklin institute, 347, 1511-1525, (2010) · Zbl 1202.93102
[34] Xua, Y.; Zhou, W.; Fang, J.; Sun, W., Adaptive synchronization of uncertain chaotic systems with adaptive scaling function, Journal of the franklin institute, 348, 2406-2416, (2011) · Zbl 1246.34052
[35] Park, J.; Jly, D.H.; Won, S.C.; Lee, S.M., Adaptive \(H_\infty\) synchronization of unified chaotic systems, Modern physics letters B, 23, 1157-1169, (2009) · Zbl 1179.37123
[36] Li, X.; Cao, J., Adaptive synchronization for delayed neural networks with stochastic perturbation, Journal of the franklin institute, 345, 779-791, (2008) · Zbl 1169.93350
[37] Lee, S.M.; Park, J., Delay-dependent criteria for absolute stability of uncertain time-delayed Lur’e dynamical systems, Journal of the franklin institute, 347, 146-153, (2010) · Zbl 1298.93256
[38] Grassi, G., Propagation of projective synchronization in a series connection of chaotic systems, Journal of the franklin institute, 345, 438-451, (2010) · Zbl 1185.93075
[39] Mahmoud, E.E.; Mahmoud, G.M., On some chaotic complex nonlinear systems, (2010), Lambert Academic Publishing Germany, ISBN 978-3-8433-8182-6 · Zbl 1215.93114
[40] Mahmoud, E.E.; Mahmoud, G.M., Chaotic and hyperchaotic nonlinear systems, (2011), Lambert Academic Publishing Germany, ISBN 978-3-8433-8222-9 · Zbl 1248.34080
[41] E.E Mahmoud, in review
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.