×

zbMATH — the first resource for mathematics

Variance-constrained robust estimation for uncertain systems with multiple packet dropouts. (English) Zbl 1273.93156
Summary: This paper deals with variance-constrained filtering problem in Networked Control Systems (NCSs) with multiple packet dropouts. The system is subject to time-invariant norm-bounded parameter uncertainties in both the state and measurement matrices. Based on a model of multiple packet dropouts, the consecutive packet losses rate is transformed into a stochastic parameter in the system representation. The problem addressed is to design a linear filter such that, for all admissible parameter uncertainties and consecutive packet dropouts, the error state of the filtering process is mean square bounded, and the steady-state variance of the estimation error for each state is not more than the individual prescribed upper bound. The conditions for the existence of a desired filter are obtained in terms of the solutions of two algebraic matrix inequalities, based on which an explicit expression of the robust filter is derived. Finally, an algorithm for solving the coupling inequalities, which is not optimal but practical, is provided and applied to some numerical examples.

MSC:
93E10 Estimation and detection in stochastic control theory
93C41 Control/observation systems with incomplete information
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering 82 (1) pp 35– (1960) · doi:10.1115/1.3662552
[2] Hung, Robust H filtering with error variance constraints for uncertain discrete time-varying systems with uncertainty, Automatica 39 (7) pp 1185– (2003) · Zbl 1022.93046 · doi:10.1016/S0005-1098(03)00117-1
[3] Dong, Robust H filtering for a class of nonlinear networked systems with multiple stochastic communication delays and packet dropouts, IEEE Transactions on Signal Processing 58 (4) pp 1957– (2010) · Zbl 1392.94183 · doi:10.1109/TSP.2009.2038965
[4] Zhu, Design and analysis of discrete-time robust Kalman filters, Automatica 38 pp 1069– (2002) · Zbl 1001.93078 · doi:10.1016/S0005-1098(01)00298-9
[5] Dong, Finite-horizon robust Kalman filtering for uncertain discrete time-varying systems with uncertain-convariance white noise, IEEE Signal Processing Letters 13 (6) pp 493– (2006) · doi:10.1109/LSP.2006.873148
[6] Oliveira, LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions, Systems & Control Letters 55 (1) pp 52– (2006) · Zbl 1129.93485 · doi:10.1016/j.sysconle.2005.05.003
[7] Gao, H estimation for uncertain systems with limited communication capacity, IEEE Transactions on Automatic Control 52 (11) pp 1310– (2007) · Zbl 1366.93155 · doi:10.1109/TAC.2007.908316
[8] Shaked, New approaches to robust minimum variance filter design, IEEE Transactions on Signal Processing 49 (11) pp 2620– (2001) · Zbl 1369.93652 · doi:10.1109/78.960408
[9] Shen, H filtering for nonlinear discrete-time stochastic systems with randomly varying sensor delays, Automatica 45 (4) pp 1032– (2009) · Zbl 1162.93039 · doi:10.1016/j.automatica.2008.11.009
[10] Zhang, Optimal estimation for continuous-time systems with delayed measurements, IEEE Transaction on Automatic Control 51 (5) pp 823– (2006) · Zbl 1366.93647 · doi:10.1109/TAC.2006.874983
[11] Smith, Estimation with lossy measurements: jump estimators for jump systems, IEEE Transactions on Automatic Control 48 (12) pp 2163– (2003) · Zbl 1364.93785 · doi:10.1109/TAC.2003.820140
[12] Huang, Stability of Kalman fltering with Markovian packet losses, Automatica 43 (4) pp 598– (2007) · Zbl 1261.93083 · doi:10.1016/j.automatica.2006.10.023
[13] Wang, Variance-constrained filtering for uncertain stochastic systems with missing measurements, IEEE Transactions on Automatic Control 48 (7) pp 1254– (2003) · Zbl 1364.93814 · doi:10.1109/TAC.2003.814272
[14] Ma, Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements, Signal Processing 90 (5) pp 2060– (2010) · Zbl 1197.94088 · doi:10.1016/j.sigpro.2010.01.010
[15] Malyavej, The problem of optimal robust Kalman state estimation via limited capacity digital communication channels, Systems & Control Letters 54 pp 283– (2005) · Zbl 1129.93539 · doi:10.1016/j.sysconle.2004.08.013
[16] Schenato, Proceedings of the 45th Conference on Decision & Control pp 5615– (2006) · doi:10.1109/CDC.2006.377700
[17] Sahebsara, Optimal H2 filtering in networked control systems with multiple packet dropouts, IEEE Transactions on Automatic Control 52 (8) pp 1508– (2007) · Zbl 1366.93659 · doi:10.1109/TAC.2007.902766
[18] Sahebsara, Optimal filtering with random sensor delay, multiple packet dropout and uncertain observations, International Journal of Control 80 (2) pp 292– (2007) · Zbl 1140.93486 · doi:10.1080/00207170601019500
[19] Sahebsara, Optimal H filtering in networked control systems with multiple packet dropouts, Systems & Control Letters 57 pp 696– (2008) · Zbl 1153.93034 · doi:10.1016/j.sysconle.2008.01.011
[20] Sun, Optimal linear estimation for systems with multiple packet dropouts, Automatica 44 pp 1333– (2008) · Zbl 1283.93271 · doi:10.1016/j.automatica.2007.09.023
[21] Sun, Optimal full-order and reduced-order estimators for discrete-time systems with multiple packet dropouts, IEEE Transactions on Signal Processing 56 (8) pp 4031– (2008) · Zbl 1390.94428 · doi:10.1109/TSP.2008.923196
[22] Sun, Optimal filtering for systems with multiple packet dropouts, IEEE Transactions on Circuits and Systems-II: Express Briefs 55 (7) pp 695– (2008) · doi:10.1109/TCSII.2008.921576
[23] Dong, Variance-constrained h filtering for a class of nonlinear time-varying systems with multiple missing measurements: the finite-horizon case, IEEE Transactions on Signal Processing 58 (5) pp 2534– (2010) · Zbl 1391.93233 · doi:10.1109/TSP.2010.2042489
[24] Petersen, Optimal guaranteed cost filtering for uncertain discrete-time linear systems, International Journal of Robust and Nonlinear Control 6 (4) pp 267– (1996) · Zbl 1035.93509 · doi:10.1002/(SICI)1099-1239(199605)6:4<267::AID-RNC232>3.0.CO;2-3
[25] Wang, Robust steady-state filtering for systems with deterministic and stochastic uncertainties, IEEE Transactions on Signal Processing 51 (10) pp 2550– (2003) · doi:10.1109/TSP.2003.816861
[26] Skelton, Lyapunov and covariance controllers, International Journal of Control 57 pp 519– (1993) · Zbl 0769.93069 · doi:10.1080/00207179308934405
[27] Wang, Robust H2/ H filtering for linear systems with error variance constraints, IEEE Tranctions on Signal Processing 48 (6) pp 2463– (2000) · Zbl 1003.93051 · doi:10.1109/78.852028
[28] Wang, Sampled-data filtering with error covariance assignment, IEEE Transaction on Signal Processing 49 pp 666– (2001) · doi:10.1109/78.905899
[29] Wang, Robust filtering for bilinear uncertain stochastic discrete-time systems, IEEE Transaction on Signal Processing 50 pp 560– (2002) · Zbl 1369.93661 · doi:10.1109/78.984737
[30] Wang, Robust filtering under randomly varying sensor delay with variance constraints, IEEE Transactions on Circuits and Systems-II: Express Briefs 51 (5) pp 320– (2004) · doi:10.1109/TCSII.2004.829572
[31] DeKoning, Optimal estimation of linear discrete time systems with stochastic parameters, Automatica 20 pp 113– (1984) · Zbl 0542.93062 · doi:10.1016/0005-1098(84)90071-2
[32] Beran E Grigoriadis K A combined alternating projections and semidefinite programming algorithm for low-order control design Processing of the World congress of IFAC San Francisco, CA 1996 85 90
[33] Saberi, H2 Optimal Control (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.