×

zbMATH — the first resource for mathematics

On projection methods, convergence and robust formulations in topology optimization. (English) Zbl 1274.74409
Summary: Mesh convergence and manufacturability of topology optimized designs have previously mainly been assured using density or sensitivity based filtering techniques. The drawback of these techniques has been gray transition regions between solid and void parts, but this problem has recently been alleviated using various projection methods. In this paper we show that simple projection methods do not ensure local mesh-convergence and propose a modified robust topology optimization formulation based on erosion, intermediate and dilation projections that ensures both global and local mesh-convergence.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393 · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[2] Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1:55–69 · Zbl 0794.49040 · doi:10.1007/BF02163264
[3] Amir O, Bendsoe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491 · Zbl 1183.74216 · doi:10.1002/nme.2536
[4] Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[5] Bendsøe MP, Sigmund O (2004) Topology optimization–theory, methods and applications. Springer, Berlin · Zbl 1059.74001
[6] Borel PI, Frandsen LH, Harpøth A, Kristensen M, Jensen JS, Sigmund O (2005) Topology optimised broadband photonic crystal Y-splitter. Electron Lett 41(2):69–71 · doi:10.1049/el:20057717
[7] Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158 · Zbl 0971.74062 · doi:10.1002/nme.116
[8] Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459 · Zbl 1014.74057 · doi:10.1016/S0045-7825(00)00278-4
[9] Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10:40–45 · doi:10.1007/BF01743693
[10] Guest J (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1–4):123–135. doi: 10.1016/j.cma.2009.09.023 · Zbl 1231.74360 · doi:10.1016/j.cma.2009.09.023
[11] Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254 · Zbl 1079.74599 · doi:10.1002/nme.1064
[12] Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on the perimeter. Struct Optim 11(1):1–11 · doi:10.1007/BF01279647
[13] Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22(6):1191–1198 · doi:10.1364/JOSAB.22.001191
[14] Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226 · Zbl 0861.73072 · doi:10.1016/0045-7825(95)00928-0
[15] Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2010) Heaviside projection based topology optimization by a pde-filtered scalar function. Struct Multidisc Optim. doi: 10.1007/s00158-010-0562-2 · Zbl 1274.74349
[16] Kirsch U (2008) Reanalysis of structures. Springer, Berlin · Zbl 1159.74015
[17] Lazarov B, Sigmund O (2009) Sensitivity filters in topology optimisation as a solution to Helmholtz type differential equation. In: Proc. of the 8th world congress on structural and multidisciplinary optimization. Lisbon, Portugal
[18] Lazarov B, Sigmund O (2010) Filters in topology optimizat ion based on Helmholtz type differential equations. Int J Numer Methods Eng. doi: 10.1002/nme.3072
[19] Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331 · Zbl 1194.74272 · doi:10.1016/j.cma.2008.08.003
[20] Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760 · Zbl 1062.74592 · doi:10.1002/nme.694
[21] Sardan Ö, Petersen DH, Mølhave K, Sigmund O, Bøggild P (2008) Topology optimized electrothermal polysilicon microgrippers. Microelectron Eng 85:1096–1099. doi: 10.1016/j.mee.2008.01.049 · doi:10.1016/j.mee.2008.01.049
[22] Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524 · doi:10.1080/08905459708945415
[23] Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424 · doi:10.1007/s00158-006-0087-x
[24] Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25(2):227–239. doi: 10.1007/s10409-009-0240-z · Zbl 1270.74165 · doi:10.1007/s10409-009-0240-z
[25] Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75 · doi:10.1007/BF01214002
[26] Stainko R, Sigmund O (2007) Tailoring dispersion properties of photonic crystal waveguides by topology optimization. Waves Random Complex Media 17:477–489 · Zbl 1191.78049 · doi:10.1080/17455030701501851
[27] Svanberg K (1987) The method of moving asymptotes–a new method for structural optimization. Int J Numer Methods Eng 24:359–373 · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[28] Wang F, Jensen J, Sigmund O (2010) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties (submitted)
[29] Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246 · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[30] Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside funtions. Struct Multidisc Optim 41:495–505 · Zbl 1274.74419 · doi:10.1007/s00158-009-0452-7
[31] Yoon GH, Sigmund O (2008) A monolithic approach for topology optimization of electrostatically actuated devices. Comput Methods Appl Mech Eng 197:4062–4075. doi: 10.1016/j.cma.2008.04.004 · Zbl 1194.74279 · doi:10.1016/j.cma.2008.04.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.