×

Ruin probabilities and deficit for the renewal risk model with phase-type interarrival times. (English) Zbl 1274.91244

Summary: This paper shows how the multivariate finite time ruin probability function, in a phase-type environment, inherits the phase-type structure and can be efficiently approximated with only one Laplace transform inversion.
From a theoretical point of view, we also provide below a generalization of Thorin’s formula (1971) for the double Laplace transform of the finite time ruin probability, by considering also the deficit at ruin; the model is that of a Sparre Andersen (renewal) risk process with phase-type interarrival times.
In the case when the claims distribution is of phase-type as well, we obtain also an alternative formula for the single Laplace transform in time (or “exponentially killed probability”), in terms of the roots with positive real part of the Lundberg’s equations, which complements Asmussen’s representation (1992) in terms of the roots with negative real part.

MSC:

91B30 Risk theory, insurance (MSC2010)
60K10 Applications of renewal theory (reliability, demand theory, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Scand. Actuarial Journal. (1977)
[2] Skandinavisk Aktuarietidskrift pp 159– (1971)
[3] ASTIN Bulletin VI (1971)
[4] ASTIN Bulletin 31 pp 63– (2001)
[5] Insurance: Mathematics and Economics (2001)
[6] ASTIN Bulletin 32 (2002)
[7] Insurance: Mathematics and Economics 25 pp 133– (1999)
[8] Scandinavian Actuarial Journal 99 pp 106– (1999)
[9] General Solutions of ultimate ruin probabilities (2000)
[10] Ruin Probabilities (2000) · Zbl 0986.62086
[11] ASTIN Bulletin VII pp 138– (1973)
[12] Matrix-Analytic Methods in Stochastic Models pp 313– (1996)
[13] Scandinavian Actuarial Journal pp 65– (1982)
[14] DOI: 10.1214/aop/1176989805 · Zbl 0755.60049
[15] Insurance: Mathematics and Economics 10 pp 259– (1991)
[16] Scandinavian Actuarial Journal (1977) · Zbl 0545.00025
[17] Applied Probability and Queues. (1987) · Zbl 0624.60098
[18] Skandinavisk Aktuarietidskrift pp 100– (1973)
[19] Approximations for the probability of ruin within finite time pp 31– (1984)
[20] Skandinavisk Aktuarietidskrift pp 14– (1971)
[21] Skandinavisk Aktuarietidskrift pp 29– (1970)
[22] Insurance: Mathematics and Economics 26 pp 251– (2000)
[23] DOI: 10.2143/AST.24.2.2005068
[24] Scan. Act. Journal pp 48– (1977)
[25] Scan. Act. Journal pp 121– (1974)
[26] Mitt. Verein. schweiz. Versich.-Mathr. 71 pp 71– (1971)
[27] Stochastic Processes for Insurance and Finance (1999) · Zbl 0940.60005
[28] New quadrature formulas for the numerical inversion of Laplace transforms 9 pp 351– (1969)
[29] TIMS Studies in the Management Science 7 pp 177– (1977)
[30] Probability distibutions of phase-type pp 173– (1975)
[31] Constructing a Matrix Exponential Distribution Using Moment Matching, In Approximation Models of Feed-Forward G/G/1/N Queuing Networks with Correlated Arrivals (2000)
[32] Parameter Approximation for Phase type Distributions (1994)
[33] Stochastic Models 6 pp 259– (1985)
[34] DOI: 10.2143/AST.17.2.2014970
[35] Insurance: Mathematics and Economics 27 pp 331– (2000)
[36] Insurance: Mathematics and Economics 12 pp 23– (1993)
[37] Scandinavian Actuarial Journal pp 148– (1996)
[38] (1955)
[39] The Phase Concept: Approximation of Measured Data and Performance Analysis pp 23– (1977)
[40] Scandinavian Actuarial Journal 100 pp 63– (2000)
[41] Scan. Act. Journal pp 121– (1975)
[42] DOI: 10.1017/S0021900200017320
[43] Scand. Actuarial Journal pp 43– (1974)
[44] DOI: 10.1016/S0167-6377(97)00046-1 · Zbl 0911.90172
[45] Math. Comp. Sci. Series 30 pp 1– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.