×

zbMATH — the first resource for mathematics

Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. (English) Zbl 1276.26013
Summary: We provide criteria for existence and uniqueness of solutions to a class of discrete fractional boundary value problems of order \(\alpha \in (0,1]\). An example illustrating our results is presented at the end of the paper.

MSC:
26A33 Fractional derivatives and integrals
39A05 General theory of difference equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal R.P., Monographs and Textbooks in Pure and Applied Mathematics 228, in: Difference Equations and Inequalities, 2. ed. (2000) · Zbl 0952.39001
[2] Atici F.M., Int. J. Differ. Equ. 2 (2) pp 165– (2007)
[3] DOI: 10.1090/S0002-9939-08-09626-3 · Zbl 1166.39005
[4] DOI: 10.1080/10236190903029241 · Zbl 1215.39002
[5] DOI: 10.1016/j.jmaa.2010.02.009 · Zbl 1204.39004
[6] DOI: 10.3934/dcds.2011.29.417 · Zbl 1209.49020
[7] Dragomir S.S., J. Inequal. Appl. 5 (2) pp 103– (2000)
[8] DOI: 10.1090/S0002-9939-2012-11533-3 · Zbl 1243.26012
[9] Goodrich C.S., Int. J. Differ. Equ. 5 pp 195– (2010)
[10] DOI: 10.1016/j.camwa.2010.10.041 · Zbl 1211.39002
[11] DOI: 10.2298/AADM110111001G · Zbl 1289.39008
[12] DOI: 10.1016/j.amc.2010.11.029 · Zbl 1215.39003
[13] DOI: 10.1080/10236198.2010.503240 · Zbl 1253.26010
[14] DOI: 10.4067/S0719-06462011000300009 · Zbl 1248.39003
[15] DOI: 10.1016/j.camwa.2011.04.019 · Zbl 1228.44010
[16] Miller K.S., Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988) pp 139– (1989)
[17] DOI: 10.1080/10236190600949790 · Zbl 1115.39022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.