×

Electromagnetic fields in dispersive chiral media generated by modulated nonuniformly moving sources. (English) Zbl 1276.78005

Summary: A representation for the fields generated by moving sources in chiral media in the form of double time-frequency oscillating integrals is obtained by using quaternionic analysis methods. Some additional assumptions concerning the source allow us to introduce a large dimensionless parameter \(\lambda > 0\) which characterizes simultaneously the slowness of variations of the amplitude and of the velocity of the source. Application of the two-dimensional stationary phase method to the integral representation of the field leads to asymptotic formulas for the electromagnetic field for large \(\lambda > 0\), and efficient formulas for the frequency and the time Doppler effects in dispersive chiral media. As an application of the proposed method, we consider the Vavilov-Cherenkov radiation in chiral dispersive media.

MSC:

78A40 Waves and radiation in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G. N. Afanasiev, Vavilov-Cherenkov and Synchrotron Radiation. Foundations and Applications (Kluwer Academic Publishers, 2004). · Zbl 1067.78001
[2] V. M. Babich, V. S. Buldyrev, and I. A. Molotkov, Space-Time Ray Methods. Linear and Non-Linear Waves (Leningrad Univ., 1985). · Zbl 0678.35002
[3] D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On Electromagnetic Waves in Chiral Media,” Appl. Phys. 18, 211-216 (1979). · doi:10.1007/BF00934418
[4] K. V. Khmelnytskaya, V. V. Kravchenko, and H. Oviedo, “Quaternionic Integral Representations for Electromagnetic Fields in Chiral Media,” Telecommunications and Radio Engineering 56(4), (5), 53-61 (2001).
[5] V. V. Kravchenko and H. Oviedo, “On a Quaternionic Reformulation of Maxwell’s Equations for Chiral Media and Its Applications,” Z. Anal. Anwendungen 22(3), 569-589 (2003). · Zbl 1060.30063 · doi:10.4171/ZAA/1163
[6] V. V. Kravchenko and H. Oviedo, “Time-Dependent Electromagnetic Fields in Chiral Media,” J. Phys. A: Math. Theoret. 43(45), 455213 (2010). · Zbl 1203.78008 · doi:10.1088/1751-8113/43/45/455213
[7] J. Lekner, “Optical Properties of Isotropic Chiral Media,” Pure Appl. Opt. 5, 417-443 (1996). · doi:10.1088/0963-9659/5/4/008
[8] R. M. Lewis, Asymptotic Methods for the Solution of Dispersive Hyperbolic Equations, Asymptotic Solutions of Differential Equations and Their Applications (John Wiley & Sons, Inc. (University of Wisconsin Symposium Proceedings) New York, 1964). · Zbl 0277.35066
[9] I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston-London, 1994).
[10] Stratis, I. G.; Yannacopoulos, A. N., Electromagnetic Fields in Linear and Nonlinear Chiral Media: a Time-Domain Analysis, 471-486 (2004) · Zbl 1062.78004
[11] K. B. Liaskos, I. G. Stratis, and A. N. Yannacopoulos, “A Priori Estimates for a Singular Limit Approximation of the Constitutive Laws for Chiral Media in the Time Domain,” J. Math. Anal. Appl. 355(1), 288-302 (2009). · Zbl 1177.35042 · doi:10.1016/j.jmaa.2009.01.062
[12] G. F. Roach, I. G. Stratis, and A. N. Yannacopoulos, Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics (Princeton University Press, 2012). · Zbl 1250.78001
[13] A. Lakhtakia, V. K. Varadan, and V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Media (Springer, Berlin, 1989). · Zbl 0695.73041
[14] V. V. Kravchenko, Applied Quaternionic Analysis (Heldermann Verlag, Lemgo, 2003). · Zbl 1014.78003
[15] S. M. Grudsky, K. V. Khmelnytskaya, and V. V. Kravchenko, “On a Quaternionic Maxwell Equation for the Time-Dependent Electromagnetic Field in a Chiral Medium,” J. Phys. A 37(16), 4641-4647 (2004). · Zbl 1047.78003 · doi:10.1088/0305-4470/37/16/013
[16] V. Rabinovich, “Propagation of Electromagnetic Waves Generated by Moving Sources in Dispersive Media,” Russ. J. Math. Phys. 19(1), 107-120 (2012). · Zbl 1252.78017 · doi:10.1134/S1061920812010098
[17] B. M. Bolotovskii, “Vavilov-Cherenkov Radiation: Its Discovery and Applications,” Physics-Uspekhi 52(11), (2009).
[18] N. Blestein and R.A. Handelsman, Asymptotic Extension of Integrals (Dover Publication Ink., New York, 1975).
[19] L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, NY, 4, 1960). · Zbl 0094.41601
[20] L. Cohen, Time-Frequency Analysis (Prentice Hall, 1995).
[21] M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow, 1977) [in Russian]. · Zbl 0463.41020
[22] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973). · Zbl 0050.41802
[23] J. D. Jackson, Classical Electrodynamics (J. Willey&Son Ink., New York, London, Sidney, 1962).
[24] J. V. Jelley, Cherenkov Radiation and Its Applications (Pergamon Press, London, 1958). · Zbl 0082.20201
[25] V. L. Ginzburg, “Radiation of Uniformly Moving Sources (Vavilov-Cherenkov Effect, Doppler Effect in Medium, Transition Radiation and Related Phenomena),” Tr. Fiz. Inst. AN SSSR 176, 1-31 (1976) [in Russian].
[26] V. L. Ginsburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1981) [in Russian].
[27] V. L. Ginsburg, Propagation of Electromagnetic Waves in Plasma (Nauka, Moscow, 1960) [in Russian].
[28] L. D. Landau and E. M. Lifshitz, Field Theory (Theorical Physics 2, Nauka, Moscow, 1988) [in Russian]. · Zbl 0665.70004
[29] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Theorical Physics 8, Nauka, Moscow, 1982) [in Russian]. · Zbl 0122.45002
[30] N. Engheta and S. Bassiri, “Cherenkov Radiation in Chiral Media,” J. Appl. Phys. 9(1), 4393-4398 (1950).
[31] P. Hillion, “Cherenkov Radiation in Homogeneous Isotropic Chiral Media,” Turkish. J. Phys. 30, 115-126 (2006).
[32] L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Distribution Theory and Fourier Analysis (Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983). · Zbl 0521.35001
[33] V. P. Maslov, The Complex WKB Method for Nonlinear Equations (Nauka, Moscow, 1977) [in Russian]; English transl.: The Complex WKB Method for Nonlinear Equations. I. Linear Theory (Birkhäuser, Basel, 1994). · Zbl 0449.58001
[34] V. P. Maslov and M. V. Fedoryuk, Quasiclassical Approximation for the Equations of Quantum Mechanics (Nauka, Moscow, 1976; V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics, D. Reidel, Dordrecht, 1981). · Zbl 0449.58002
[35] Min Cheng, “Forward- and Backward-Propagating Cerenkov Radiation in Strong Chiral Media,” Intern. Online J. Opt., 15(15), 9793-9798 (2007).
[36] A. Lakhtakia, “Unified Approach for Canonical Cerenkov Radiation in Isotropic Chiral Media,” Optik 87, 133-134 (1991).
[37] A. H. Sihvola, “Temporal Dispersion in Chiral Composite Materials: A Theoretical Study,” J. Electromagn. Waves Appl. 6(9), 1177-1196 (1992).
[38] M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Second Edition, Springer, Berlin, Heidelberg, New York, 2001). · Zbl 0980.35180 · doi:10.1007/978-3-642-56579-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.