×

Regulation of entanglement and geometric quantum discord of hybrid superconducting qubits for circuit QED. (English) Zbl 1276.81014

Summary: We investigate the dynamic evolution behaviors of entanglement and geometric quantum discord (GQD) of hybrid qubits in a circuit QED system. Under certain initial conditions, interactions between qubits and that between the qubit and the cavity can suppress the decay of entanglement and GQD of qubits. Under the initial condition \(|\psi_Q(0)\rangle_I=\sin\alpha|\downarrow\uparrow\rangle+\cos\alpha|\uparrow\downarrow \rangle\), such decay was avoided by increasing the coupling strength ratio between qubits and that between the qubit and the cavity. Under the aforementioned condition, the survival time of entanglement and GQD was prolonged by decreasing the coupling strength ratio between qubits and that between the qubit and the cavity.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81V10 Electromagnetic interaction; quantum electrodynamics
81V80 Quantum optics
82D55 Statistical mechanics of superconductors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Browne, D.E., Plenio, M.B.: Robust generation of entanglement between two cavities mediated by short interactions with an atom. Phys. Rev. A 67, 012325 (2003) · doi:10.1103/PhysRevA.67.012325
[2] Deng, Z.J., Feng, M., Gao, K.L.: Simple scheme for generating an n-qubit W state in cavity QED. Phys. Rev. A 73, 014302 (2006) · doi:10.1103/PhysRevA.73.014302
[3] Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011) · doi:10.1103/PhysRevLett.107.240501
[4] Schreier, J.A., Houck, A.A., Koch, J., Schuster, D.I., Johnson, B.R., Chow, J.M., Gambetta, J.M., Majer, J., Frunzio, L., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502 (2008) · doi:10.1103/PhysRevB.77.180502
[5] Ji, Y.H., Hu, J.J., Hu, Y.: Comparison and control of the robustness between quantum entanglement and quantum correlation in an open quantum system. Chin. Phys. B 21, 110304 (2012) · doi:10.1088/1674-1056/21/11/110304
[6] Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012) · doi:10.1103/PhysRevB.86.100506
[7] Laflamme, C., Clerk, A.A.: Weak qubit measurement with a nonlinear cavity: beyond perturbation theory. Phys. Rev. Lett. 109, 123602 (2012) · doi:10.1103/PhysRevLett.109.123602
[8] Ji, Y.H., Liu, Y.M., Wang, Z.S.: Avoiding the decay of entanglement for coupling two-qubit system interacting with a non-Markov environment. Chin. Phys. B 20, 070304 (2011) · doi:10.1088/1674-1056/20/7/070304
[9] Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012) · doi:10.1103/PhysRevLett.108.250501
[10] Datta, A., Zhang, L.J., Nunn, J., Langford, N.K., Feito, A., Plenio, M.B., Walmsley, I.A.: Compact continuous-variable entanglement distillation. Phys. Rev. Lett. 108, 060502 (2012) · doi:10.1103/PhysRevLett.108.060502
[11] Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011) · Zbl 1255.81032 · doi:10.1103/PhysRevLett.106.120401
[12] Xu, J.S., Xu, X.Y., Li, C.F., Zhang, C.J., Zou, X.B., Guo, G.C.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 10.1038 (2010)
[13] He, X.L., You, J.Q., Liu, Y.X., Wei, L.F., Nori, F.: Switchable coupling between charge and flux qubits. Phys. Rev. B 76, 24517 (2007) · doi:10.1103/PhysRevB.76.024517
[14] He, X.L., Liu, Y.X., You, J.Q., Nori, F.: Variable-frequency-controlled coupling in charge qubit circuits: effects of microwave field on qubit-state readout. Phys. Rev. A 76, 022317 (2007) · doi:10.1103/PhysRevA.76.022317
[15] Wu, Q.Q., Liao, J.Q., Kuang, L.M.: Quantum state transfer between charge and flux qubits in circuit-QED. Chin. Phys. Lett. 25, 1179 (2008) · doi:10.1088/0256-307X/25/4/005
[16] Zhang, J.S., Chen, A.-X.: Review of quantum discord in bipartite and multipartite systems. Quantum Phys. Lett. 1, 69 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.