×

zbMATH — the first resource for mathematics

Nonnegative diffusion orientation distribution function. (English) Zbl 1276.94004
Summary: Because of the well-known limitations of diffusion tensor imaging (DTI) in regions of low anisotropy and multiple fiber crossing, high angular resolution diffusion imaging (HARDI) and Q-ball imaging (QBI) are used to estimate the probability density function (PDF) of the average spin displacement of water molecules. In particular, QBI is used to obtain the diffusion orientation distribution function (ODF) of these multiple fiber crossing. As a probability distribution function, the orientation distribution function should be nonnegative which is not guaranteed in the existing methods. This paper proposes a novel technique to guarantee the nonnegative property of ODF by solving a convex optimization problem, which has a convex quadratic objective function and a constraint involving the nonnegativity requirement on the smallest Z-eigenvalue of the diffusivity tensor. Using convex analysis and optimization techniques, we first derive the optimality conditions of this convex optimization problem. Then, we propose a gradient descent algorithm to solve this problem. We also present formulas for determining the principal directions (maxima) of the ODF. Numerical examples on synthetic data as well as MRI data are displayed to demonstrate the significance of our approach.

MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48, 331–340 (2002)
[2] Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor filed estimation from DW-MRI. NeuroImage 45, 5153–5162 (2009)
[3] Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Karssemeijer, M., Lelieveldt, B. (eds.) Information Processing and Medical Imaging, pp. 308–319. Springer, Berlin (2007)
[4] Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis–a technical review. NMR Biomed. 15, 456–467 (2002)
[5] Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson., Ser. B 103, 247–254 (1994)
[6] Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysica 66, 259–267 (1994)
[7] Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008, pp. 1–8. Springer, Berlin (2008)
[8] Chefd’Hotel, C., Tschumperle, D., Deriche, R., Faugeras, O.: Regularizing flows for constrained matrix-valued images. J. Math. Imaging Vis. 20, 147–162 (2004) · Zbl 1366.94049
[9] Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998) · Zbl 0920.13026
[10] Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular diffusion imaging: estimation and applications. Magn. Reson. Med. 56, 395–410 (2006)
[11] Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and analytical q-ball imaging. Magn. Reson. Med. 58, 497–510 (2007)
[12] Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of Rician adapted non-local means filtering on HARDI. In: MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–130 (2008)
[13] Ghosh, A., Deriche, R.: From second to higher order tensors in diffusion-MRI. In: Tensors in Image Processing and Computer Vision, pp. 315–334. Springer, London (2009)
[14] Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract directions from the orientation distribution function in diffusion MRI. In: Workshop on Computational Diffusion MRI, Held in Conjunction with the MICCAI 2008 Conference, New York, USA, September 2008 (2008)
[15] Ghosh, A., Descoteaux, M., Deriche, R.: Riemannian framework for estimating symmetric positive definite 4th order diffusion tensors. In: Metaxas, D., Axel, L., Fichtinger, G., Székeley, G. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008, pp. 858–865. Springer, Berlin (2008)
[16] Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)
[17] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) · Zbl 0930.65067
[18] Ozarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50, 955–965 (2003)
[19] Patel, V., Shi, Y., Thompson, P.M., Toga, A.W.: Mesh-based spherical deconvolution: a flexible approach to reconstruction of non-negative fiber orientation distributions. NeuroImage 51, 1071–1081 (2010)
[20] Poupon, C., Rieul, B., Kezele, I., Perrin, M., Poupon, F., Mangin, J.F.: New diffusion phantoms dedicated to the study and validation of HARDI models. Magn. Reson. Med. 60, 76–83 (2008)
[21] Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005) · Zbl 1125.15014
[22] Qi, L., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Comput. Appl. Math. 221, 150–157 (2008) · Zbl 1176.65046
[23] Qi, L., Han, D., Wu, E.X.: Principal invariants and inherent parameters of diffusion kurtosis tensors. J. Math. Anal. Appl. 349, 165–180 (2009) · Zbl 1158.15029
[24] Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118, 301–316 (2009) · Zbl 1169.90022
[25] Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010) · Zbl 1197.92032
[26] Rockafellar, R.T.: Convex Analysis. Princeton Publisher, Princeton (1970) · Zbl 0193.18401
[27] Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)
[28] Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N.G., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 454–459 (2002)
[29] Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 1459–1472 (2007)
[30] Wang, Z., Vemuri, B.C., Chen, Y., Mareci, T.H.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Med. Imaging 23, 930–939 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.