Super module amenability of inverse semigroup algebras. (English) Zbl 1277.46022

Summary: We compare the notions of super amenability and super module amenability of Banach algebras which are Banach modules over another Banach algebra with compatible actions. We find conditions for the two notions to be equivalent. In particular, we study arbitrary module actions of \(l^1(E_S)\) on \(l^1(S)\) for an inverse semigroup \(S\) with the set of idempotents \(E_S\) and show that under certain conditions, \(l^1(S)\) is super module amenable if and only if \(S\) is finite. We also study the super module amenability of \(l^1(S)^{\ast \ast }\) and module biprojectivity of \(l^1(S)\), for arbitrary actions.


46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
43A20 \(L^1\)-algebras on groups, semigroups, etc.
Full Text: DOI


[1] Amini, M., Module amenability for semigroup algebras, Semigroup Forum, 69, 243-254, (2004) · Zbl 1059.43001
[2] Amini, M.; Bodaghi, A.; Ebrahimi Bagha, D., Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 80, 302-312, (2010) · Zbl 1200.43001
[3] Amini, M.; Ebrahimi Bagha, D., Weak module amenability for semigroup algebras, Semigroup Forum, 71, 18-26, (2005) · Zbl 1086.43001
[4] Duncan, J.; Namioka, I., Amenability of inverse semigroups and their semigroup algebras, Proc. R. Soc. Edinb. A, 80, 309-321, (1988) · Zbl 0393.22004
[5] Ghahramani, F.; Loy, R.J.; Willis, G.A., Amenability and weak amenability of second conjugate Banach algebras, Proc. Am. Math. Soc., 124, 1489-1497, (1996) · Zbl 0851.46035
[6] Helemskii, A.Ya.: Banach and Locally Convex Algebras. Oxford University Press, Oxford (1993)
[7] Howie, J.M.: An Introduction to Semigroup Theory. Academic Press, London (1976) · Zbl 0355.20056
[8] Pourmahmood-Aghababa, H., (super) module amenability, module topological center and semigroup algebras, Semigroup Forum, 81, 344-356, (2010) · Zbl 1207.46039
[9] Rejali, A., The Arens regularity of weighted inverse semigroup algebras, 347-353, (1995)
[10] Rezavand, R.; Amini, M.; Sattari, M.H.; Ebrahimi Bagha, D., Module Arens regularity for semigroup algebras, Semigroup Forum, 77, 300-305, (2008) · Zbl 1161.46026
[11] Runde, V.: Lectures on Amenability. Lectures Notes in Mathematical, vol. 1774. Springer, Berlin (2002) · Zbl 0999.46022
[12] Selivanov, Yu.V., Banach algebras of small global dimension zero, Usp. Mat. Nauk, 31, 227-228, (1976) · Zbl 0345.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.