×

Wigner function evolution of excited even and odd coherent state in thermal environment via thermo entangled approach. (English) Zbl 1277.81079

Summary: We adopt a new approach, thermo entangled representation, to study time evolution of density operator in thermal environment. We then investigate the analytical expressions of Wigner function (WF) evolution of arbitrary number excited coherent states (ECSs) and excited even (odd) coherent states (EECSs, EOCSs) in thermal environment, respectively. In addition, their nonclassicality is numerically discussed by exploring the negativity of WF with decay time in thermal channel, respectively. It is found that WF loses its non-Gaussian nature and becomes Gaussian after long times.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81S22 Open systems, reduced dynamics, master equations, decoherence
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
81P16 Quantum state spaces, operational and probabilistic concepts
81P40 Quantum coherence, entanglement, quantum correlations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/978-3-662-04209-0 · doi:10.1007/978-3-662-04209-0
[2] DOI: 10.1103/PhysRevA.60.4034 · doi:10.1103/PhysRevA.60.4034
[3] DOI: 10.1016/S0375-9601(03)00288-3 · Zbl 1011.81502 · doi:10.1016/S0375-9601(03)00288-3
[4] DOI: 10.1103/PhysRevLett.98.063901 · doi:10.1103/PhysRevLett.98.063901
[5] Eisert J., Phys. Rev. Lett. pp 137903–
[6] DOI: 10.1103/PhysRevA.67.062320 · doi:10.1103/PhysRevA.67.062320
[7] DOI: 10.1103/PhysRevA.66.032316 · doi:10.1103/PhysRevA.66.032316
[8] DOI: 10.1103/PhysRevA.65.042304 · doi:10.1103/PhysRevA.65.042304
[9] DOI: 10.1103/PhysRevA.43.492 · doi:10.1103/PhysRevA.43.492
[10] DOI: 10.1088/1464-4266/6/10/003 · doi:10.1088/1464-4266/6/10/003
[11] DOI: 10.1103/PhysRevA.40.2847 · doi:10.1103/PhysRevA.40.2847
[12] DOI: 10.1103/PhysRevLett.70.1244 · doi:10.1103/PhysRevLett.70.1244
[13] DOI: 10.1088/0031-8949/79/03/035004 · Zbl 1170.81325 · doi:10.1088/0031-8949/79/03/035004
[14] DOI: 10.1364/JOSAB.25.000054 · doi:10.1364/JOSAB.25.000054
[15] DOI: 10.1103/PhysRevA.75.032104 · doi:10.1103/PhysRevA.75.032104
[16] DOI: 10.1364/JOSAB.25.001955 · doi:10.1364/JOSAB.25.001955
[17] DOI: 10.1103/PhysRevA.78.013810 · doi:10.1103/PhysRevA.78.013810
[18] DOI: 10.1364/JOSAB.25.001025 · doi:10.1364/JOSAB.25.001025
[19] DOI: 10.1088/1355-5111/8/3/006 · doi:10.1088/1355-5111/8/3/006
[20] DOI: 10.1088/0953-4075/29/12/021 · doi:10.1088/0953-4075/29/12/021
[21] DOI: 10.1142/S0217984900000707 · doi:10.1142/S0217984900000707
[22] DOI: 10.1142/S0217979204024835 · Zbl 1073.81016 · doi:10.1142/S0217979204024835
[23] DOI: 10.1007/978-3-662-04103-1 · doi:10.1007/978-3-662-04103-1
[24] DOI: 10.1088/1464-4266/5/4/201 · doi:10.1088/1464-4266/5/4/201
[25] DOI: 10.1016/j.aop.2005.09.011 · Zbl 1091.81005 · doi:10.1016/j.aop.2005.09.011
[26] Fan H. Y., Commun. Theor. Phys. 51 pp 321–
[27] Fan H. Y., Phys. Rev. A 49 pp 704–
[28] Fan H. Y., Phys. Rev. A 54 pp 958–
[29] DOI: 10.1103/PhysRevA.75.045801 · doi:10.1103/PhysRevA.75.045801
[30] DOI: 10.1016/0375-9601(87)90016-8 · doi:10.1016/0375-9601(87)90016-8
[31] DOI: 10.1088/0305-4470/33/8/307 · Zbl 0955.33005 · doi:10.1088/0305-4470/33/8/307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.