Chelkak, Dmitry; Izyurov, Konstantin Holomorphic spinor observables in the critical Ising model. (English) Zbl 1277.82010 Commun. Math. Phys. 322, No. 2, 303-332 (2013). A problem of importance about the Ising model is the rigorous proof of the conformal covariance of spin correlations in the scaling limit. In the present paper one introduces the concept of spinor holomorphic observables to deal with this question, and one proves the convergence of ratios of spin correlations corresponding to various boundary conditions to conformally invariant limits. Reviewer: Guy Jumarie (Montréal) Cited in 17 Documents MSC: 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics Keywords:Ising model; conformal covariances PDF BibTeX XML Cite \textit{D. Chelkak} and \textit{K. Izyurov}, Commun. Math. Phys. 322, No. 2, 303--332 (2013; Zbl 1277.82010) Full Text: DOI arXiv OpenURL References: [1] Beffara, V., Duminil-Copin, H.: Smirnov’s fermionic observable away from criticality. Ann. Prob. 40(6), 2667-2689 (2012) · Zbl 1339.60136 [2] Burkhardt, T.; Guim, I., Conformal theory of the two-dimensional Ising model with homogeneous boundary conditions and with disordred boundary fields, Phys. Rev. B, 47, 14306-14311, (1993) [3] Chelkak, D., Hongler, C., Izyurov, K.: Conformal invariance of spin correlations in the planar Ising model. http://arxiv.org/abs/1202.2838v1 [math-ph], 2012 · Zbl 1318.82006 [4] Chelkak, D.; Smirnov, S., Discrete complex analysis on isoradial graphs, Adv. in Math., 228, 1590-1630, (2011) · Zbl 1227.31011 [5] Chelkak, D.; Smirnov, S., Universality in the 2D Ising model and conformal invariance of fermionic observables, Inv. Math., 189, 515-580, (2012) · Zbl 1257.82020 [6] Duminil-Copin, H.; Hongler, C.; Nolin, P., Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model, Comm. Pure Appl. Math., 64, 1165-1198, (2011) · Zbl 1227.82015 [7] Hongler, C.: Conformal invariance of Ising model correlations. Ph.D. thesis, 2010, available at www.math.columbia.edu/ hongler/thesis.pdf · Zbl 1304.82013 [8] Hongler, C.; Phong, D.H., Hardy spaces and boundary conditions from the Ising model, Math. Zeit., 274, 209-224, (2013) · Zbl 1282.30028 [9] Hongler, C., Smirnov, S.: The energy density in the planar Ising model. http://arxiv.org/abs/1008.2645v2 [math-ph], 2010 · Zbl 1287.82007 [10] Izyurov, K.: Holomorphic spinor observables and interfaces in the critical Ising model Ph.D. thesis, 2011 · Zbl 1227.31011 [11] Kadanoff, L.P., Ceva, H.L.: Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B (3) 3, 3918-3939 (1971) · Zbl 1252.82029 [12] Kenyon, R., Spanning forests and the vector bundle Laplacian, Ann. Prob., 39, 1983-2017, (2011) · Zbl 1252.82029 [13] Kenyon, R.: Conformal invariance of loops in the double-dimer model. http://arxiv.org/abs/1105.4158v2 [math.PR], 2012 · Zbl 1283.05218 [14] Mercat, C., Discrete Riemann surfaces and the Ising model, Commun. Math. Phys., 218, 177-216, (2001) · Zbl 1043.82005 [15] Palmer, J.: Planar Ising correlations, Volume 49 of Progress in Mathematical Physics. Boston, MA: Birkhäuser Boston Inc., 2007 · Zbl 1136.82001 [16] Pommerenke, C.: Boundary behaviour of conformal maps, Berlin-Heidelberg-NewYork: Springer-Ferlag, 1992 · Zbl 0762.30001 [17] Riva, V., Cardy, J.: Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. Theory Exp., 12, P12001, 19 pp. (electronic) (2006) · Zbl 1456.82176 [18] Smirnov, S.: Towards conformal invariance of 2D lattice models. In: International Congress of Mathematicians. Vol. II, Zürich: Eur. Math. Soc., 2006, pp. 1421-1451 · Zbl 1112.82014 [19] Smirnov, S.: Conformal invariance in random cluster models. I. Holmorphic fermions in the Ising model. Ann. Math. (2) 172, 1435-1467 (2010) · Zbl 1200.82011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.