zbMATH — the first resource for mathematics

Deficient topological measures and functionals generated by them. (English. Russian original) Zbl 1279.28018
Sb. Math. 204, No. 5, 726-761 (2013); translation from Mat. Sb. 204, No. 5, 109-142 (2013).
The author studies the quasi-measures defined and studied by J. F. Aarnes [Adv. Math. 86, No. 1, 41–67 (1991; Zbl 0744.46052)]. Here \(X\) is a compact Hausdorff space, \(\mathcal{C}, \; \tau\) the classes of closed and open subsets of \(X\), and \(\mathcal{A} = \mathcal{C} \cup \tau\). A mapping \(\psi : \mathcal{A} \to [0, \infty)\) is a DTM (deficient toplogical measure) if it is monotone on \(\mathcal{A}\), additive on \(\mathcal{C}\) and \( \; \tau\), inner regular by compact subsets on \( \tau\) and outer regular by open subsets on \( \mathcal{C}\); \(\psi\) is in M (measure) if it can be extended to a regular Borel measure; \(\psi\) is a TM (toplogical measure) if it is monotone and additive on \(\mathcal{A}\); \(\psi\) is in PDTM if \(\mu \in M, \; \mu \leq \psi\) implies \(\mu = 0.\) In Sections 1, 2, the author proves some properties and inter-relations of these measures. If \(X \subset \mathbb{R}\) then the right and left distribution functions \(\xi_{\psi}^{r}(t)= \psi ([t, \infty) \cap X)\), \(\xi_{\psi}^{l}(t)= \psi (( - \infty, t] \cap X)\) are defined.
For a general \(X\) and an \(f \in C(X)\), \(f(X)\) is a compact subset of \(\mathbb{R}\) and \(\psi \circ f^{-1}\) is a DTM on \(f(X)\). Using this, and denoting the corresponding \(\xi's\) by \(\xi_{\psi, f}^{r}\), \(\xi_{\psi, f}^{l}\), one gets two Borel measures, uniquely defined by: \(\mu_{\psi, f}^{r}([t, \infty))= \psi(f^{-1} ([t, \infty))\), \(\mu_{\psi, f}^{l}([t, \infty))= \psi(f^{-1} (( - \infty, t])\). In Section 3, using these measures, right and left integrals of \(f\) with respect to \(\psi\) are defined : \(\rho_{\psi}^{r}(f)= \int t d \mu_{\psi, f}^{r}\), \(\rho_{\psi}^{l}(f)= \int t d \mu_{\psi, f}^{l}\). Then the author determines several properties of these functionals \(\rho_{\psi}^{r}\), \(\rho_{\psi}^{l}\) and using them proves some Riesz representation type theorems to retrieve \(\psi\) from them.
Some related additional results and applications are also given.

28C15 Set functions and measures on topological spaces (regularity of measures, etc.)
28C05 Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures
Zbl 0744.46052
Full Text: DOI
[1] J. F. Aarnes, “Quasi-states and quasi-measures”, Adv. Math., 86:1 (1991), 41 – 67 · Zbl 0744.46052
[2] O. Johansen, A. B. Rustad, “Construction and properties of quasi-linear functionals”, Trans. Amer. Math. Soc., 358:6 (2006), 2735 – 2758 · Zbl 1111.28013
[3] М. Г. Свистула, “Разложение обобщенной квазимеры”, Вестник СамГУ, 62:3 (2008), 192 – 207
[4] Р. Энгелькинг, Общая топология, Мир, М., 1986
[5] R. Engelking, General topology, PWN, Warsaw, 1977
[6] П. Халмош, Теория меры, ИЛ, М., 1953
[7] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950 · Zbl 0040.16802
[8] K. P. S. Bhaskara Rao, M. Bhaskara Rao, Theory of charges. A study of finitely additive measures, Pure Appl. Math., 109, Academic Press, New York – London, 1983 · Zbl 0516.28001
[9] H. Ko\"nig, Measure and integration. An advanced course in basic procedures and applications, Springer-Verlag, Berlin, 1997 · Zbl 0887.28001
[10] J. F. Aarnes, “Construction of non-subadditive measures and discretization of Borel measures”, Fund. Math., 147:3 (1995), 213 – 237 · Zbl 0842.28004
[11] D. J. Grubb, T. LaBerge, “Additivity of quasi-measures”, Proc. Amer. Math. Soc., 126:10 (1998), 3007 – 3012 · Zbl 0907.28007
[12] S. V. Butler, “Density in the space of topological measures”, Fund. Math., 174:3 (2002), 239 – 251 · Zbl 1027.28017
[13] T. LaBerge, “Supports of quasi-measures”, Houston J. Math., 24:2 (1998), 301 – 312 · Zbl 0968.28006
[14] М. Г. Свистула, “Критерий правильной квазимеры”, Матем. заметки, 81:5 (2007), 751 – 759 · Zbl 1210.28003
[15] M. G. Svistula, “Proper quasi-measure criterion”, Math. Notes, 81:5 (2007), 671 – 680 · Zbl 1210.28003
[16] В. И. Богачe\"в, Основы теории меры, т. 2, РХД, Ижевск, 2003
[17] V. I. Bogachev, Measure theory, v. 2, Springer-Verlag, Berlin, 2007 · Zbl 1120.28001
[18] К. Партасарати, Введение в теорию вероятностей и теорию меры, Мир, М., 1983 · Zbl 0529.28001
[19] K. R. Parthasarathy, Introduction to probability and measure, Macmillan, Delhi, 1977 · Zbl 0395.28001
[20] D. J. Grubb, “Signed quasi-measures”, Trans. Amer. Math. Soc., 349:3 (1997), 1081 – 1089 · Zbl 0876.28017
[21] D. J. Grubb, “Irreducible partitions and the construction of quasi-measures”, Trans. Amer. Math. Soc., 353:5 (2001), 2059 – 2072 · Zbl 0968.28007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.