×

Optimal risk sharing with background risk. (English) Zbl 1280.91092

Summary: This paper examines qualitative properties of efficient insurance contracts in the presence of background risk. In order to get results for all strictly risk-averse expected utility maximizers, the concept of “stochastic increasingness” is used. Different assumptions on the stochastic dependence between the insurable and uninsurable risk lead to different qualitative properties of the efficient contracts. The new results obtained under hypotheses of dependent risks are compared to classical results in the absence of background risk or to the case of independent risks. The theory is further generalized to nonexpected utility maximizers.

MSC:

91B30 Risk theory, insurance (MSC2010)
60K10 Applications of renewal theory (reliability, demand theory, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arrow, K.J., Uncertainty and the welfare of medical care, Amer. econ. rev., 53, 941-973, (1963)
[2] Arrow, K.J., Essays in the theory of risk-bearing, (1970), North-Holland Amsterdam · Zbl 0215.58602
[3] K.J. Arrow, Optimal insurance and generalized deductibles, Scand. Actuar. J. (1974) 1-42. · Zbl 0306.90009
[4] Athey, S., Monotone comparative statics under uncertainty, Quart. J. econ., 117, 187-223, (2002) · Zbl 1002.91028
[5] Barlow, R.E.; Proschan, F., Statistical theory of reliability and life testing, (1975), Holt Rinehart and Winston, New York · Zbl 0379.62080
[6] Barrieu, P.; El Karoui, N., Optimal design of derivatives in illiquid markets, Quant. finance, 2, 3, 181-188, (2002) · Zbl 1405.91584
[7] Barrieu, P.; El Karoui, N., Structuration optimale de produits financiers et diversification en présence de sources de risque non-négociables, C. R. math. acad. sci. Paris, 336, 6, 493-498, (2003) · Zbl 1044.91021
[8] Borch, K., Equilibrium in a reinsurance market, Econometrica, 30, 424-444, (1962) · Zbl 0119.36504
[9] Cambanis, S.; Simons, G.; Stout, W., Inequalities for \(\mathit{Ek}(X, Y)\) when the marginals are fixed, Z. wahrscheinlichkeitstheorie verw. gebiete, 36, 4, 285-294, (1976) · Zbl 0325.60002
[10] Carlier, G.; Dana, R.-A., Rearrangement inequalities in non-convex insurance models, J. math. econ., 41, 4-5, 483-503, (2005) · Zbl 1106.91038
[11] Chew, H.S.; Mao, H.M., A Schur concave characterization of risk aversion for non-expected utility preferences, J. econ. theory, 67, 2, 402-435, (1995) · Zbl 0844.90008
[12] Doherty, N.A.; Schlesinger, H., The optimal deductible for an insurance policy when initial wealth is random, J. bus., 56, 4, 555-565, (1983)
[13] Doherty, N.A.; Schlesinger, H., Optimal insurance in incomplete markets, J. polit. economy, 91, 6, 1045-1054, (1983)
[14] Eeckhoudt, L.; Gollier, C.; Schlesinger, H., Changes in background risk and risk taking behavior, Econometrica, 64, 683-689, (1996) · Zbl 0849.90002
[15] Eeckhoudt, L.; Kimball, M., Background risk, prudence, and the demand for insurance, (), 239-254
[16] Embrechts, P.; McNeil, A.; Straumann, D., Correlation: pitfalls and alternatives, a short, non-technical article, Risk magazine, 12, 5, 69-71, (1999)
[17] Embrechts, P.; McNeil, A.; Straumann, D., Correlation and dependence in risk management: properties and pitfalls, (), 176-223
[18] Esary, J.D.; Proschan, F.; Walkup, D.W., Association of random variables, with applications, Ann. math. statist., 38, 1466-1474, (1967) · Zbl 0183.21502
[19] Finkelshtain, I.; Kella, O.; Scarsini, M., On risk aversion with two risks, J. math. econ., 31, 2, 239-250, (1999) · Zbl 1057.91504
[20] Franke, G.; Stapleton, R.C.; Subrahmanyam, M.G., Who buys and who sells options: the role of options in an economy with background risk, J. econ. theory, 82, 89-109, (1998) · Zbl 0910.90009
[21] Franke, G.; Stapleton, R.C.; Subrahmanyam, M.G., Background risk and the demand for state-contingent claims, Econ. theory, 23, 2, 321-335, (2004) · Zbl 1069.91068
[22] Gollier, C., Optimum insurance of approximate losses, J. risk insurance, 63, 3, 369-380, (1996)
[23] Gollier, C., The economics of risk and time, (2001), MIT Press Cambridge · Zbl 0991.91001
[24] Gollier, C.; Pratt, J.W., Risk vulnerability and the tempering effect of background risk, Econometrica, 64, 1109-1123, (1996) · Zbl 0856.90014
[25] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988, reprint of the 1952 edition.
[26] Jewitt, I., Risk aversion and the choice between risky prospects: the preservation of comparative statics results, Rev. econ. stud., 54, 1, 73-85, (1987) · Zbl 0604.90020
[27] Joe, H., Multivariate models and dependence concepts, (1997), Chapman & Hall London · Zbl 0990.62517
[28] Karlin, S.; Rinott, Y., Classes of orderings of measures and related correlation inequalities, J. multivariate anal., 10, 467-498, (1980) · Zbl 0469.60006
[29] Kihlstrom, R.E.; Romer, D.; Williams, S., Risk aversion with random initial wealth, Econometrica, 49, 4, 911-920, (1981) · Zbl 0461.90018
[30] Kimball, M.S., Standard risk aversion, Econometrica, 61, 3, 589-611, (1993) · Zbl 0771.90017
[31] Lehmann, E.L., Some concepts of dependence, Ann. math. statist., 37, 1137-1153, (1966) · Zbl 0146.40601
[32] Lorentz, G.G., An inequality for rearrangements, Amer. math. monthly, 60, 176-179, (1953) · Zbl 0050.28201
[33] Luciano, E.; Kast, R., A value at risk approach to background risk, Geneva papers risk insurance theory, 26, 2, 91-115, (2001)
[34] Mahul, O., Optimum crop insurance under joint yield and price risk, J. risk insurance, 67, 1, 109-122, (2000)
[35] Milgrom, P.; Shannon, C., Monotone comparative statics, Econometrica, 62, 1, 157-180, (1994) · Zbl 0789.90010
[36] Milgrom, P.R.; Weber, R.J., A theory of auctions and competitive bidding, Econometrica, 50, 5, 1089-1122, (1982) · Zbl 0487.90017
[37] Nachman, D.C., Preservation of ‘more risk averse’ under expectations, J. econ. theory, 28, 361-368, (1982) · Zbl 0498.90006
[38] Pratt, J.W.; Zeckhauser, R.J., Proper risk aversion, Econometrica, 55, 1, 143-154, (1987) · Zbl 0612.90006
[39] Raviv, A., The design of an optimal insurance policy, Amer. econ. rev., 69, 1, 84-96, (1979)
[40] Ross, S.A., Some stronger measures of risk aversion in the small and the large with applications, Econometrica, 49, 3, 621-638, (1981) · Zbl 0471.90016
[41] Schlesinger, H., The theory of insurance demand, (), 131-151
[42] Schlesinger, H.; Doherty, N.A., Incomplete markets for insurance: an overview, J. risk insurance, 52, 3, 402-423, (1985)
[43] Sklar, M., Fonctions de répartition à n dimensions et leurs marges, Publ. inst. statist. univ. Paris, 8, 229-231, (1959) · Zbl 0100.14202
[44] Tchen, A.H., Inequalities for distributions with given marginals, Ann. probab., 8, 4, 814-827, (1980) · Zbl 0459.62010
[45] Topkis, D.M., Supermodularity and complementarity, (1998), Princeton University Press Princeton, NJ
[46] Vercammen, J., Optimal insurance with nonseparable background risk, J. risk insurance, 68, 3, 437-447, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.