×

Chaotification of nonlinear discrete systems via immersion and invariance. (English) Zbl 1280.93050

Summary: This paper is concerned with the chaotification of nonlinear discrete systems. A novel method based on (system) Immersion and (manifold) Invariance (I&I) is introduced to chaotify nonlinear discrete systems. Its basic idea is to immerse an ideal system which holds chaotic properties and may be a lower dimension into the plant system, and then control trajectories of the plant system to converge toward the invariant manifold where the ideal system is immersed. For a class of linearizable systems, we present the immersion and the control law such that these systems can be chaotified through I&I design. An illustrative example with simulation is presented to validate the proposed chaotification scheme.

MSC:

93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory
93B18 Linearizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1999) · Zbl 0931.93005
[2] Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice-Hall, New York (1995) · Zbl 0833.93003
[3] Astolfi, A., Ortega, R.: Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Automat. Control 48, 590–606 (2003) · Zbl 1364.93618 · doi:10.1109/TAC.2003.809820
[4] Ortega, R., Liu, H.: Immersion and invariance adaptive control of linear multivariable systems. Syst. Control Lett. 49, 37–47 (2003) · Zbl 1157.93429 · doi:10.1016/S0167-6911(02)00341-9
[5] Astolfi, A., Kargiannis, D., Ortega, R.: Nonlinear and Adaptive Control with Applications. Springer, Berlin (2008)
[6] Acosta, J.Á., Ortega, R., Astolfi, A., Sarras, I.: A constructive solution for stabilization via immersion and invariance: the cart and pendulum system. Automatica 44, 2352–2357 (2008) · Zbl 1153.93490 · doi:10.1016/j.automatica.2008.01.006
[7] Xie, Q., Han, Z., Wang, H., Zhang, W.: Stabilization of center systems via immersion and invariance. Nonlinear Dyn. 57, 313–319 (2009) · Zbl 1176.70019 · doi:10.1007/s11071-008-9443-2
[8] Fradkov, A.L., Evans, R.J.: Control of chaos: methods and application in engineering. Annu. Rev. Control 29, 33–56 (2005) · doi:10.1016/j.arcontrol.2005.01.001
[9] Chen, M., Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control. Chaos Solitons Fractals 17, 709–716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[10] Chen, L., Wang, X., Han, Z.: Controlling chaos in Internet congestion control model. Chaos Solitons Fractals 21, 81–91 (2004) · Zbl 1048.37080 · doi:10.1016/j.chaos.2003.09.037
[11] Lu, J.: Generating chaos via decentralized linear state feedback and a class of nonlinear functions. Chaos Solitons Fractals 25, 403–413 (2005) · Zbl 1092.37020 · doi:10.1016/j.chaos.2004.11.039
[12] Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: theory, method, and applications. Int. J. Bifurc. Chaos 10, 549–570 (2000) · Zbl 1090.37532
[13] Wang, X., Chen, G.: Chaotifying a stable LTI system by tiny feedback control. IEEE Trans. Circuits Syst. I 47, 410–415 (2000) · doi:10.1109/81.841926
[14] Wang, X., Chen, G.: Chaotifying a stable map via smooth small-amplitude high-frequency feedback control. Int. J. Circuit Theory Appl. 28, 305–312 (2000) · Zbl 1043.93026 · doi:10.1002/(SICI)1097-007X(200005/06)28:3<305::AID-CTA106>3.0.CO;2-P
[15] Zhou, T., Chen, G., Yang, Q.: A simple time-delay feedback anticontrol method made rigorous. Chaos 14, 662–668 (2004) · Zbl 1080.93018 · doi:10.1063/1.1763014
[16] Li, X., Chen, Z., Yuan, Z., Chen, G.: Generating chaos by an Elman network. IEEE Trans. Circuits Syst. I 48, 1126–1131 (2001) · Zbl 1014.92006 · doi:10.1109/81.964427
[17] Chen, G., Lai, D.: Feedback control of Lyapunov exponents for discrete-time dynamical systems. Int. J. Bifurc. Chaos 6, 1341–1349 (1996) · Zbl 0875.93157 · doi:10.1142/S021812749600076X
[18] Chen, G., Lai, D.: Making a dynamical system chaotic: feedback control of Lyapunov exponents for discrete-time dynamical systems. IEEE Trans. Circuits Syst. I 44, 250–253 (1997) · doi:10.1109/81.557372
[19] Wang, X., Chen, G.: On feedback anticontrol of discrete-time chaos. Int. J. Bifurc. Chaos 9, 1435–1441 (1999) · Zbl 0964.93039 · doi:10.1142/S0218127499000985
[20] Chen, G., Wang, X.: Chaotification of Dynamical Systems: Theory, Methods and Applications. Shanghai Jiao Tong University Press, Shanghai (2006)
[21] Yang, T., Chua, L.: Generalized synchronization of chaos via linear transformations. Int. J. Bifurc. Chaos 9, 215–219 (1999) · Zbl 0937.37019 · doi:10.1142/S0218127499000092
[22] Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976) · Zbl 0576.58018 · doi:10.1007/BF01608556
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.