zbMATH — the first resource for mathematics

A mixing propagation model of computer viruses and countermeasures. (English) Zbl 1281.68056
Summary: Based on the CMC antivirus strategy proposed by Chen and Carley, a mixing propagation model of computer viruses and countermeasures is suggested. This model has two potential virus-free equilibria and two potential endemic equilibria. The existence and global stability of these equilibria are fully investigated. From the obtained results it can be deduced that the CMC strategy is efficacious in deracinating viruses.

68M99 Computer system organization
92D30 Epidemiology
93D20 Asymptotic stability in control theory
68M11 Internet topics
Full Text: DOI
[1] Szor, P.: The Art of Computer Virus Research and Defense. Addison-Wesley, Reading (2005)
[2] Cohen, F., Computer viruses: theory and experiments, Comput. Secur., 6, 22-35, (1987)
[3] Murray, W.H., The application of epidemiology to computer viruses, Comput. Secur., 7, 130-150, (1988)
[4] Kephart, J.O.; White, S.R., Directed-graph epidemiological models of computer viruses, 343-359, (1991)
[5] Kephart, J.O.; White, S.R., Measuring and modeling computer virus prevalence, 2-15, (1987)
[6] Billings, L.; Spears, W.M.; Schwartz, I.B., A unified prediction of computer virus spread in connected networks, Phys. Lett. A, 297, 261-266, (2002) · Zbl 0995.68007
[7] Mishra, B.K.; Jha, N., Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Appl. Math. Comput., 190, 1207-1212, (2007) · Zbl 1117.92052
[8] Mishra, B.K.; Saini, D.K., SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl. Math. Comput., 188, 1476-1482, (2007) · Zbl 1118.68014
[9] Yuan, H.; Chen, G., Network virus-epidemic model with the point-to-group information propagation, Appl. Math. Comput., 206, 357-367, (2008) · Zbl 1162.68404
[10] Yuan, H.; Chen, G.; Wu, J.; Xiong, H., Towards controlling virus propagation in information systems with point-to-group information sharing, Decis. Support Syst., 48, 57-68, (2009)
[11] Piqueira, J.R.C.; Vasconcelos, A.A.; Gabriel, C.E.C.J.; Araujo, V.O., Dynamic models for computer viruses, Comput. Secur., 27, 355-359, (2008)
[12] Piqueira, J.R.C.; Araujo, V.O., A modified epidemiological model for computer viruses, Appl. Math. Comput., 213, 355-360, (2009) · Zbl 1185.68133
[13] Han, X.; Tan, Q., Dynamical behavior of computer virus on Internet, Appl. Math. Comput., 217, 2520-2526, (2010) · Zbl 1209.68139
[14] Mishra, B.K.; Saini, D.K., SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Model., 34, 710-715, (2010) · Zbl 1185.68042
[15] Mishra, B.K.; Pandey, S.K., Dynamic model of worms with vertical transmission in computer network, Appl. Math. Comput., 217, 8438-8446, (2011) · Zbl 1219.68080
[16] Toutonji, O.A.; Yoo, S.-M.; Park, M., Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model., 36, 2751-2761, (2012) · Zbl 1246.68067
[17] Feng, L.; Liao, X.; Li, H.; Han, Q., Hopf bifurcation analysis of a delayed viral infection model in computer networks, Math. Comput. Model., 56, 167-179, (2012) · Zbl 1255.34071
[18] Dong, T.; Liao, X.; Li, H., Stability and Hopf bifurcation in a computer virus model with multistate antivirus, Abstr. Appl. Anal., 2012, (2012) · Zbl 1026.37072
[19] Ren, J.; Yang, X.; Yang, L.-X.; Xu, Y.; Yang, F., A delayed computer virus propagation model and its dynamics, Chaos Solitons Fractals, 45, 74-79, (2012) · Zbl 1343.34186
[20] Ren, J.; Yang, X.; Zhu, Q.; Yang, L.X.; Zhang, C., A novel computer virus model and its dynamics, Nonlinear Anal.: Real World Appl., 13, 376-384, (2012) · Zbl 1238.34076
[21] Ren, J.; Xu, Y.; Zhang, Y.; Dong, Y.; Hao, G., Dynamics of a delay-varying computer virus propagation model, Discrete Dyn. Nat. Soc., 2012, (2012) · Zbl 1248.68076
[22] Yang, M.; Zhang, Z.; Li, Q.; Zhang, G., An SLBRS model with vertical transmission of computer virus over the Internet, Discrete Dyn. Nat. Soc., 2012, (2012) · Zbl 1248.68078
[23] Zhu, Q.; Yang, X.; Yang, L.-X.; Zhang, C., Optimal control of computer virus under a delayed model, Appl. Math. Comput., 218, 11613-11619, (2012) · Zbl 1278.49045
[24] Zhu, Q.; Yang, X.; Ren, J., Modeling and analysis of the spread of computer virus, Commun. Nonlinear Sci. Numer. Simul., 17, 5117-5124, (2012) · Zbl 1261.93012
[25] Zhang, C.; Zhao, Y.; Wu, Y., An impulse model for computer viruses, Discrete Dyn. Nat. Soc., 2012, (2012) · Zbl 1248.68079
[26] Gan, C.; Yang, X.; Liu, W.; Zhu, Q.; Zhang, X., Propagation of computer virus under human intervention: a dynamical model, Discrete Dyn. Nat. Soc., 2012, (2012) · Zbl 1248.68074
[27] Yang, L.-X.; Yang, X.; Wen, L.; Liu, J., Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability, Discrete Dyn. Nat. Soc., 2012, (2012) · Zbl 1248.68077
[28] Yang, L.-X.; Yang, X.; Wen, L.; Liu, J., A novel computer virus propagation model and its dynamics, Int. J. Comput. Math., 89, 2307-2314, (2012) · Zbl 1255.68058
[29] Yang, L.-X.; Yang, X.; Zhu, Q.; Wen, L., A computer virus model with graded cure rates, Nonlinear Anal., Real World Appl., 4, 414-422, (2012) · Zbl 1248.34033
[30] Dezsö, Z.; Barabási, A.-L., Halting viruses in scale-free networks, Phys. Rev. E, 65, (2002)
[31] Chen, L.C.; Carley, K.M., The impact of countermeasure propagation on the prevalence of computer viruses, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 34, 823-833, (2004)
[32] Markus, L.; Lefschetz, S. (ed.), Asymptotically autonomous differential systems, No. 36, 17-29, (1956), Princeton · Zbl 0075.27002
[33] Robinson, R.C.: An Introduction to Dynamical System: Continuous and Discrete. Prentice Hall, New York (2004) · Zbl 1073.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.