×

zbMATH — the first resource for mathematics

Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. (English) Zbl 1282.65118
The concept of multiresolution-based discontinuous Galerkin (MR-DG) schemes is developed, where for the sake of analysis the authors focus on one-dimensional conservation laws. Instead of the standard approach of estimating the error of the solution, an alternative adaptation strategy that does not rely on the existence of some error estimator is proposed. The main idea is to apply data compression by means of a multiresolution analysis and hard thresh holding (cf. [A. Cohen et al., Math. Comput. 72, No. 241, 183–225 (2003; Zbl 1010.65035)]). The perturbation error is introduced as the difference of the results obtained by performing computations with the reference scheme and the adaptive scheme (cf. [B. Cockburn and C.-W. Shu, Math. Comput. 52, No. 186, 411–435 (1989; Zbl 0662.65083)]). In particular, sufficient conditions are derived that ensure a priori estimates of the perturbation error. Numerical results are also presented to demonstrate the efficiency of the proposed concept.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65T60 Numerical methods for wavelets
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
Software:
igpm_t_lib
PDF BibTeX Cite
Full Text: DOI
References:
[1] Slimane Adjerid, Karen D. Devine, Joseph E. Flaherty, and Lilia Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 11-12, 1097 – 1112. · Zbl 0998.65098
[2] Bradley K. Alpert, A class of bases in \?² for the sparse representation of integral operators, SIAM J. Math. Anal. 24 (1993), no. 1, 246 – 262. · Zbl 0764.42017
[3] B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys. 182 (2002), no. 1, 149 – 190. · Zbl 1015.65046
[4] Richard M. Beam and Robert F. Warming, Multiresolution analysis and supercompact multiwavelets, SIAM J. Sci. Comput. 22 (2000), no. 4, 1238 – 1268. · Zbl 0977.42022
[5] Kim S. Bey and J. Tinsley Oden, \?\?-version discontinuous Galerkin methods for hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg. 133 (1996), no. 3-4, 259 – 286. · Zbl 0894.76036
[6] F. Bramkamp, Ph. Lamby, and S. Müller, An adaptive multiscale finite volume solver for unsteady and steady state flow computations, J. Comput. Phys. 197 (2004), no. 2, 460 – 490. · Zbl 1059.76039
[7] Kolja Brix, Ralf Massjung, and Alexander Voss, Refinement and connectivity algorithms for adaptive discontinuous Galerkin methods, SIAM J. Sci. Comput. 33 (2011), no. 1, 66 – 101. · Zbl 1227.65092
[8] Bernardo Cockburn, Quasimonotone schemes for scalar conservation laws. I, SIAM J. Numer. Anal. 26 (1989), no. 6, 1325 – 1341. · Zbl 0693.65057
[9] Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545 – 581. · Zbl 0695.65066
[10] Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu, The development of discontinuous Galerkin methods, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 3 – 50. · Zbl 0989.76045
[11] Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys. 84 (1989), no. 1, 90 – 113. · Zbl 0677.65093
[12] Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411 – 435. · Zbl 0662.65083
[13] Bernardo Cockburn and Chi-Wang Shu, The Runge-Kutta local projection \?\textonesuperior -discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 3, 337 – 361 (English, with French summary). · Zbl 0732.65094
[14] Bernardo Cockburn and Chi-Wang Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys. 141 (1998), no. 2, 199 – 224. · Zbl 0920.65059
[15] Bernardo Cockburn and Chi-Wang Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), no. 3, 173 – 261. · Zbl 1065.76135
[16] Albert Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and its Applications, vol. 32, North-Holland Publishing Co., Amsterdam, 2003. · Zbl 1038.65151
[17] A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485 – 560. · Zbl 0776.42020
[18] Albert Cohen, Sidi Mahmoud Kaber, Siegfried Müller, and Marie Postel, Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comp. 72 (2003), no. 241, 183 – 225. · Zbl 1010.65035
[19] F. Coquel, Y. Maday, S. Müller, M. Postel, and Q. H. Tran , Multiresolution and adaptive methods for convection-dominated problems, ESAIM Proceedings, vol. 29, EDP Sciences, Les Ulis, 2009. · Zbl 1423.35308
[20] Wolfgang Dahmen, Birgit Gottschlich-Müller, and Siegfried Müller, Multiresolution schemes for conservation laws, Numer. Math. 88 (2001), no. 3, 399 – 443. · Zbl 1001.65104
[21] Andreas Dedner, Charalambos Makridakis, and Mario Ohlberger, Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws, SIAM J. Numer. Anal. 45 (2007), no. 2, 514 – 538. · Zbl 1145.65072
[22] Edwige Godlewski and Pierre-Arnaud Raviart, Hyperbolic systems of conservation laws, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4, Ellipses, Paris, 1991. · Zbl 0768.35059
[23] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001), no. 1, 89 – 112. · Zbl 0967.65098
[24] Ami Harten, Multiresolution representation of data: a general framework, SIAM J. Numer. Anal. 33 (1996), no. 3, 1205 – 1256. · Zbl 0861.65130
[25] Ralf Hartmann and Paul Houston, Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws, SIAM J. Sci. Comput. 24 (2002), no. 3, 979 – 1004. · Zbl 1034.65081
[26] Ralf Hartmann and Paul Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys. 183 (2002), no. 2, 508 – 532. · Zbl 1057.76033
[27] Paul Houston, Bill Senior, and Endre Süli, \?\?-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity, Internat. J. Numer. Methods Fluids 40 (2002), no. 1-2, 153 – 169. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001). · Zbl 1021.76027
[28] Nune Hovhannisyan and Siegfried Müller, On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies, IMA J. Numer. Anal. 30 (2010), no. 4, 1256 – 1295. · Zbl 1205.65243
[29] F. Iacono, G. May, S. Müller, and R. Schäfer. A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. AICES Preprint AICES-2011/08-1, RWTH Aachen, 2011. · Zbl 1462.65141
[30] Fritz Keinert, Wavelets and multiwavelets, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004. · Zbl 1058.65150
[31] Dietmar Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1997. · Zbl 0872.76001
[32] S.N. Kruzhkov. First order quasilinear equations in several independent variables. Math. USSR Sbornik, 10:217-243, 1970. · Zbl 0215.16203
[33] Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. · Zbl 1010.65040
[34] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., 11(7):674-693, 1989. · Zbl 0709.94650
[35] Siegfried Müller, Adaptive multiscale schemes for conservation laws, Lecture Notes in Computational Science and Engineering, vol. 27, Springer-Verlag, Berlin, 2003. · Zbl 1016.76004
[36] Siegfried Müller, Multiresolution schemes for conservation laws, Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 379 – 408. · Zbl 1190.65131
[37] S. Müller and A. Voss. A Manual for the Template Class Library igpm_t_lib. IGPM-Report 197, RWTH Aachen, 2000.
[38] O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95 – 172. · Zbl 0131.31803
[39] Stanley Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), no. 5, 947 – 961. · Zbl 0627.35061
[40] W.H. Reed and T.R. Hill. Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
[41] Jean-François Remacle, Joseph E. Flaherty, and Mark S. Shephard, An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev. 45 (2003), no. 1, 53 – 72. · Zbl 1127.65323
[42] R. Schäfer. Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Ph.D. thesis, RWTH Aachen, 2011.
[43] Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439 – 471. · Zbl 0653.65072
[44] Vasily V. Strela, Multiwavelets: Theory and applications, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.) – Massachusetts Institute of Technology. · Zbl 0851.42029
[45] T. Tang and Zhen Huan Teng, Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal. 32 (1995), no. 1, 110 – 127. · Zbl 0860.65087
[46] Li Wang and Dimitri J. Mavriplis, Adjoint-based \?-\? adaptive discontinuous Galerkin methods for the 2D compressible Euler equations, J. Comput. Phys. 228 (2009), no. 20, 7643 – 7661. · Zbl 1391.76367
[47] Robert F. Warming and Richard M. Beam, Discrete multiresolution analysis using Hermite interpolation: biorthogonal multiwavelets, SIAM J. Sci. Comput. 22 (2000), no. 4, 1269 – 1317. · Zbl 0977.42023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.